A new fractional collocation method for a system of multi-order fractional differential equations with variable coefficients

2021 ◽  
Vol 383 ◽  
pp. 113139
Author(s):  
A. Faghih ◽  
P. Mokhtary
Author(s):  
Nilay Akgonullu Pirim ◽  
Fatma Ayaz

This paper focuses on the approximate solutions of the higher order fractional differential equations with multi terms by the help of Hermite Collocation method (HCM). This new method is an adaptation of Taylor's collocation method in terms of truncated Hermite Series. With this method, the differential equation is transformed into an algebraic equation and the unknowns of the equation are the coefficients of the Hermite series solution of the problem. This method appears as a useful tool for solving fractional differential equations with variable coefficients. To show the pertinent feature of the proposed method, we test the accuracy of the method with some illustrative examples and check the error bounds for numerical calculations.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
M. H. Heydari ◽  
M. R. Hooshmandasl ◽  
F. M. Maalek Ghaini ◽  
F. Mohammadi

The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by a change of variables, the multiorder fractional differential equations (MOFDEs) with nonhomogeneous initial conditions are transformed to the MOFDEs with homogeneous initial conditions to obtain suitable numerical solution of these problems. Numerical examples are provided to demonstrate the applicability and simplicity of the numerical scheme based on the Legendre and Chebyshev wavelets.


Sign in / Sign up

Export Citation Format

Share Document