scholarly journals Global asymptotical stability of a second order rational difference equation

2007 ◽  
Vol 54 (9-10) ◽  
pp. 1260-1266 ◽  
Author(s):  
Lin-Xia Hu ◽  
Wan-Tong Li ◽  
Hong-Wu Xu
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


Author(s):  
Qamar Din ◽  
A. A. Elsadany ◽  
Samia Ibrahim

AbstractThis work is related to dynamics of a second-order rational difference equation. We investigate the parametric conditions for local asymptotic stability of equilibria. Center manifold theorem and bifurcation theory are implemented to discuss the parametric conditions for existence and direction of period-doubling bifurcation and pitchfork bifurcation at trivial equilibrium point. Moreover, the parametric conditions for existence and direction of Neimark–Sacker bifurcation at positive steady state are investigated with the help of bifurcation theory. The chaos control in the system is discussed through implementation of OGY feedback control method. In particular, we stabilize the chaotic orbits at an unstable fixed point by using OGY chaotic control. Finally, numerical simulations are provided to illustrate theoretical results. The computation of the maximum Lyapunov exponents confirms the presence of chaotic behavior in the system.


2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
S. Atawna ◽  
R. Abu-Saris ◽  
E. S. Ismail ◽  
I. Hashim

This is a continuation part of our investigation in which the second order nonlinear rational difference equation xn+1=(α+βxn+γxn-1)/(A+Bxn+Cxn-1), n=0,1,2,…, where the parameters A≥0 and B, C, α, β, γ are positive real numbers and the initial conditions x-1, x0 are nonnegative real numbers such that A+Bx0+Cx-1>0, is considered. The first part handled the global asymptotic stability of the hyperbolic equilibrium solution of the equation. Our concentration in this part is on the global asymptotic stability of the nonhyperbolic equilibrium solution of the equation.


2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
S. Atawna ◽  
R. Abu-Saris ◽  
E. S. Ismail ◽  
I. Hashim

Our goal in this paper is to investigate the global asymptotic stability of the hyperbolic equilibrium solution of the second order rational difference equation xn+1=α+βxn+γxn-1/A+Bxn+Cxn-1, n=0,1,2,…, where the parameters A≥0 and B, C, α, β, γ are positive real numbers and the initial conditions x-1, x0 are nonnegative real numbers such that A+Bx0+Cx-1>0. In particular, we solve Conjecture 5.201.1 proposed by Camouzis and Ladas in their book (2008) which appeared previously in Conjecture 11.4.2 in Kulenović and Ladas monograph (2002).


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Q. Din

We study the qualitative behavior of the positive solutions of a second-order rational fuzzy difference equation with initial conditions being positive fuzzy numbers, and parameters are positive fuzzy numbers. More precisely, we investigate existence of positive solutions, boundedness and persistence, and stability analysis of a second-order fuzzy rational difference equation. Some numerical examples are given to verify our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document