convergence of solutions
Recently Published Documents


TOTAL DOCUMENTS

293
(FIVE YEARS 46)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Helmut Abels

AbstractWe consider the sharp interface limit of a convective Allen–Cahn equation, which can be part of a Navier–Stokes/Allen–Cahn system, for different scalings of the mobility $$m_\varepsilon =m_0\varepsilon ^\theta $$ m ε = m 0 ε θ as $$\varepsilon \rightarrow 0$$ ε → 0 . In the case $$\theta >2$$ θ > 2 we show a (non-)convergence result in the sense that the concentrations converge to the solution of a transport equation, but they do not behave like a rescaled optimal profile in normal direction to the interface as in the case $$\theta =0$$ θ = 0 . Moreover, we show that an associated mean curvature functional does not converge to the corresponding functional for the sharp interface. Finally, we discuss the convergence in the case $$\theta =0,1$$ θ = 0 , 1 by the method of formally matched asymptotics.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Víctor Hernández-Santamaría ◽  
Alberto Saldaña

Abstract We study existence and convergence properties of least-energy symmetric solutions (l.e.s.s.) to the pure critical exponent problem ( - Δ ) s ⁢ u s = | u s | 2 s ⋆ - 2 ⁢ u s , u s ∈ D 0 s ⁢ ( Ω ) ,  2 s ⋆ := 2 ⁢ N N - 2 ⁢ s , (-\Delta)^{s}u_{s}=\lvert u_{s}\rvert^{2_{s}^{\star}-2}u_{s},\quad u_{s}\in D^% {s}_{0}(\Omega),\,2^{\star}_{s}:=\frac{2N}{N-2s}, where s is any positive number, Ω is either ℝ N {\mathbb{R}^{N}} or a smooth symmetric bounded domain, and D 0 s ⁢ ( Ω ) {D^{s}_{0}(\Omega)} is the homogeneous Sobolev space. Depending on the kind of symmetry considered, solutions can be sign-changing. We show that, up to a subsequence, a l.e.s.s. u s {u_{s}} converges to a l.e.s.s. u t {u_{t}} as s goes to any t > 0 {t>0} . In bounded domains, this convergence can be characterized in terms of an homogeneous fractional norm of order t - ε {t-\varepsilon} . A similar characterization is no longer possible in unbounded domains due to scaling invariance and an incompatibility with the functional spaces; to circumvent these difficulties, we use a suitable rescaling and characterize the convergence via cut-off functions. If t is an integer, then these results describe in a precise way the nonlocal-to-local transition. Finally, we also include a nonexistence result of nontrivial nonnegative solutions in a ball for any s > 1 {s>1} .


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
M. Abdelghani ◽  
A. Melnikov ◽  
A. Pak

Abstract The estimates of N. V. Krylov for distributions of stochastic integrals by means of the L d {L_{d}} -norm of a measurable function are well-known and are widely used in the theory of stochastic differential equations and controlled diffusion processes. We generalize estimates of this type for optional semimartingales, then apply these estimates to prove the change of variables formula for a general class of functions from the Sobolev space W d 2 {W^{2}_{d}} . We also show how to use these estimates for the investigation of L 2 {L^{2}} -convergence of solutions of optional SDE’s.


Author(s):  
Viktor Bazhenov ◽  
Maksym Horbach ◽  
Ivan Martyniuk ◽  
Oleksandr Maksimyuk

In this paper, a numerical study of the convergence of solutions obtained on the basis of the developed approach [1, 3, 4, 5] is carried out. A wide range of test problems for bodies with smoothly and abruptly varying physical and geometric characteristics in elastic and elastic-plastic formulation are considered. The approach developed within the framework of the semi-analytical method to study the stress-strain state of inhomogeneous curvilinear prismatic bodies, taking into account physical and geometric nonlinearity, requires substantiation of its effectiveness in relation to the traditional FEM and confirmation of the reliability of the results obtained on its basis. The main indicators that allow comparing the SAFEM and FEM include the rate of convergence of solutions with an increase in the number of unknowns and the amount of charges associated with solving linear and nonlinear equations. For the considered class of problems, the convergence is determined by such factors as the nature of the change along Z3’ of the geometric and mechanical parameters of the object. The uneven distribution of mechanical characteristics is associated with the presence of the initial heterogeneity of the material, the development of plastic deformations, and the dependence of material properties on temperature. The same factors also affect the convergence of the iterative process, since the conditionality of the SAFEM matrix depends on them. In order to determine the area of effective application of the SAFEM, a wide range of test cases are considered. In all cases, the semi-analytic finite element method is not inferior in approximation accuracy, and in some problems it is 1.5-2 times superior to the traditional method of scheduling elements. finite element method.


Sign in / Sign up

Export Citation Format

Share Document