scholarly journals On the choice of the internal degrees of freedom for the nodal Virtual Element Method in two dimensions

2016 ◽  
Vol 72 (8) ◽  
pp. 1968-1976 ◽  
Author(s):  
Alessandro Russo
2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Franco Dassi ◽  
Alessio Fumagalli ◽  
Ilario Mazzieri ◽  
Anna Scotti ◽  
Giuseppe Vacca

2019 ◽  
Vol 53 (2) ◽  
pp. 375-404 ◽  
Author(s):  
L. Beirão da Veiga ◽  
A. Russo ◽  
G. Vacca

In this paper we initiate the investigation of Virtual Elements with curved faces. We consider the case of a fixed curved boundary in two dimensions, as it happens in the approximation of problems posed on a curved domain or with a curved interface. While an approximation of the domain with polygons leads, for degree of accuracy k≥2, to a sub-optimal rate of convergence, we show (both theoretically and numerically) that the proposed curved VEM lead to an optimal rate of convergence.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1252
Author(s):  
Hongming Luo ◽  
Guanhua Sun ◽  
Lipeng Liu ◽  
Wei Jiang

To avoid disadvantages caused by rotational degrees of freedom in the original Discontinuous Deformation Analysis (DDA), a new block displacement mode is defined within a time step, where displacements of all the block vertices are taken as the degrees of freedom. An individual virtual element space V1(Ω) is defined for a block to illustrate displacement of the block using the Virtual Element Method (VEM). Based on VEM theory, the total potential energy of the block system in DDA is formulated and minimized to obtain the global equilibrium equations. At the end of a time step, the vertex coordinates are updated by adding their incremental displacement to their previous coordinates. In the new method, no explicit expression for the displacement u is required, and all numerical integrations can be easily computed. Four numerical examples originally designed by Shi are analyzed, verifying the effectiveness and precision of the proposed method.


2021 ◽  
Vol 386 ◽  
pp. 114098
Author(s):  
Franco Dassi ◽  
Alessio Fumagalli ◽  
Davide Losapio ◽  
Stefano Scialò ◽  
Anna Scotti ◽  
...  

2012 ◽  
Vol 23 (01) ◽  
pp. 199-214 ◽  
Author(s):  
L. BEIRÃO DA VEIGA ◽  
F. BREZZI ◽  
A. CANGIANI ◽  
G. MANZINI ◽  
L. D. MARINI ◽  
...  

We present, on the simplest possible case, what we consider as the very basic features of the (brand new) virtual element method. As the readers will easily recognize, the virtual element method could easily be regarded as the ultimate evolution of the mimetic finite differences approach. However, in their last step they became so close to the traditional finite elements that we decided to use a different perspective and a different name. Now the virtual element spaces are just like the usual finite element spaces with the addition of suitable non-polynomial functions. This is far from being a new idea. See for instance the very early approach of E. Wachspress [A Rational Finite Element Basic (Academic Press, 1975)] or the more recent overview of T.-P. Fries and T. Belytschko [The extended/generalized finite element method: An overview of the method and its applications, Int. J. Numer. Methods Engrg.84 (2010) 253–304]. The novelty here is to take the spaces and the degrees of freedom in such a way that the elementary stiffness matrix can be computed without actually computing these non-polynomial functions, but just using the degrees of freedom. In doing that we can easily deal with complicated element geometries and/or higher-order continuity conditions (like C1, C2, etc.). The idea is quite general, and could be applied to a number of different situations and problems. Here however we want to be as clear as possible, and to present the simplest possible case that still gives the flavor of the whole idea.


2018 ◽  
Vol 39 (4) ◽  
pp. 1787-1817 ◽  
Author(s):  
Alexey Chernov ◽  
Lorenzo Mascotto

Abstract We introduce the harmonic virtual element method (VEM) (harmonic VEM), a modification of the VEM (Beirão da Veiga et al. (2013) Basic principles of virtual element methods. Math. Models Methods Appl. Sci., 23, 199–214.) for the approximation of the two-dimensional Laplace equation using polygonal meshes. The main difference between the harmonic VEM and the VEM is that in the former method only boundary degrees of freedom are employed. Such degrees of freedom suffice for the construction of a proper energy projector on (piecewise harmonic) polynomial spaces. The harmonic VEM can also be regarded as an ‘$H^1$-conformisation’ of the Trefftz discontinuous Galerkin-finite element method (TDG-FEM) (Hiptmair et al. (2014) Approximation by harmonic polynomials in starshaped domains and exponential convergence of Trefftz hp-DGFEM. ESAIM Math. Model. Numer. Anal., 48, 727–752.). We address the stabilization of the proposed method and develop an hp version of harmonic VEM for the Laplace equation on polygonal domains. As in TDG-FEM, the asymptotic convergence rate of harmonic VEM is exponential and reaches order $\mathscr{O}(\exp (-b\sqrt [2]{N}))$, where $N$ is the number of degrees of freedom. This result overperforms its counterparts in the framework of hp FEM (Schwab, C. (1998)p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Clarendon Press Oxford.) and hp VEM (Beirão da Veiga et al. (2018) Exponential convergence of the hp virtual element method with corner singularity. Numer. Math., 138, 581–613.), where the asymptotic rate of convergence is of order $\mathscr{O}(\exp(-b\sqrt [3]{N}))$.


CALCOLO ◽  
2021 ◽  
Vol 58 (3) ◽  
Author(s):  
Elena Bachini ◽  
Gianmarco Manzini ◽  
Mario Putti

AbstractWe develop a geometrically intrinsic formulation of the arbitrary-order Virtual Element Method (VEM) on polygonal cells for the numerical solution of elliptic surface partial differential equations (PDEs). The PDE is first written in covariant form using an appropriate local reference system. The knowledge of the local parametrization allows us to consider the two-dimensional VEM scheme, without any explicit approximation of the surface geometry. The theoretical properties of the classical VEM are extended to our framework by taking into consideration the highly anisotropic character of the final discretization. These properties are extensively tested on triangular and polygonal meshes using a manufactured solution. The limitations of the scheme are verified as functions of the regularity of the surface and its approximation.


2018 ◽  
Vol 77 (3) ◽  
pp. 1874-1908 ◽  
Author(s):  
Lorenzo Mascotto ◽  
Ilaria Perugia ◽  
Alexander Pichler

2021 ◽  
Vol 381 ◽  
pp. 113815
Author(s):  
S. Naranjo Alvarez ◽  
V. Bokil ◽  
V. Gyrya ◽  
G. Manzini

Sign in / Sign up

Export Citation Format

Share Document