scholarly journals Osmotic and ionic regulation, and modulation by protein kinases, FXYD2 peptide and ATP of gill (Na+, K+)-ATPase activity, in the swamp ghost crab Ucides cordatus (Brachyura, Ocypodidae)

Author(s):  
Francisco A. Leone ◽  
Malson N. Lucena ◽  
Leonardo M. Fabri ◽  
Daniela P. Garçon ◽  
Carlos F.L. Fontes ◽  
...  
Author(s):  
Francisco A. Leone ◽  
Malson N. Lucena ◽  
Leonardo M. Fabri ◽  
Daniela P. Garçon ◽  
Carlos F.L. Fontes ◽  
...  

ABSTRACTThe gill (Na+, K+)-ATPase is the main enzyme that underpins osmoregulatory ability in crustaceans that occupy biotopes like mangroves, characterized by salinity variation. We evaluated osmotic and ionic regulatory ability in the semi-terrestrial mangrove crab Ucides cordatus after 10-days acclimation to different salinities. We also analyzed modulation by exogenous FXYD2 peptide and by endogenous protein kinases A and C, and Ca2+- calmodulin-dependent kinase of (Na+, K+)-ATPase activity. Hemolymph osmolality was strongly hyper-/hypo-regulated in crabs acclimated at 2 to 35 ‰S. Cl- was well hyper-/hypo- regulated although Na+ much less so, becoming iso-natremic at high salinity. (Na+, K+)- ATPase activity was greatest in isosmotic crabs (26 ‰S), diminishing progressively from 18 and 8 ‰S (≈0.5 fold) to 2 ‰S (0.04-fold), and decreasing notably at 35 ‰S (0.07-fold). At low salinity, the (Na+, K+)-ATPase exhibited a low affinity ATP-binding site that showed Michaelis-Menten behavior. Above 18 ‰S, an additional, high affinity ATP-binding site, corresponding to 10-20% of total (Na+, K+)-ATPase activity appeared. Activity is stimulated by exogenous pig kidney FXYD2 peptide, while endogenous protein kinases A and C and Ca2+/calmodulin-dependent kinase all inhibit activity. This is the first demonstration of inhibitory phosphorylation of a crustacean (Na+, K+)-ATPase by Ca2+/calmodulin-dependent kinase. Curiously, hyper-osmoregulation in U. cordatus shows little dependence on gill (Na+, K+)-ATPase activity, suggesting a role for other ion transporters. These findings reveal that the salinity acclimation response in U. cordatus consists of a suite of osmoregulatory and enzymatic adjustments that maintain its osmotic homeostasis in a challenging, mangrove forest environment.Graphical abstractHighlightsGill (Na+, K+)-ATPase activity is greatest in isosmotic crabs, diminishing in lower and higher salinities.A high affinity ATP-binding site (10-20% of total activity) is exposed above 18 ‰S.Exogenous FXYD2 peptide stimulates activity; endogenous PKA, PKC and CaMK inhibit activity.First demonstration of inhibitory phosphorylation of crustacean (Na+, K+)-ATPase by CaMK.Hyper-osmoregulation shows little dependence on (Na+, K+)-ATPase activity.


Author(s):  
Alfred E. Pinkney ◽  
David A. Wright ◽  
Michael A. Jepson ◽  
David W. Towle

1989 ◽  
Vol 143 (1) ◽  
pp. 459-473
Author(s):  
EUGENIO FRIXIONE ◽  
JORGE HERNÁNDEZ

The possibility that serotonin might play a role in the modulation of screening-pigment position in crayfish photoreceptors was explored through experiments with isolated eyes and a membrane fraction from retinal homogenates. In the isolated eye serotonin (≥10−4 moll−1) and some of its agonists exerted a limited dark-adapting influence over the pigment position, irrespective of the presence or absence of light, and this effect was abolished by the simultaneous addition of serotonin antagonists. In the retinal membrane fraction serotonin and quipazine produced a methysergide-sensitive stimulation of the Na+/K+-ATPase activity. These results are interpreted in terms of a serotonin-mediated efferent input on the photoreceptors, which would affect the ionic regulation of the pigment transport mechanisms.


Sign in / Sign up

Export Citation Format

Share Document