estuarine fish
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 68)

H-INDEX

48
(FIVE YEARS 4)

PeerJ ◽  
2022 ◽  
Vol 9 ◽  
pp. e12593
Author(s):  
Ashley M. McDonald ◽  
Charles W. Martin ◽  
Guillaume Rieucau ◽  
Brian J. Roberts

Estuarine ecosystem balance typically relies on strong food web interconnectedness dependent on a relatively low number of resident taxa, presenting a potential ecological vulnerability to extreme ecosystem disturbances. Following the Deepwater Horizon (DwH) oil spill disaster of the northern Gulf of Mexico (USA), numerous ecotoxicological studies showed severe species-level impacts of oil exposure on estuarine fish and invertebrates, yet post-spill surveys found little evidence for severe impacts to coastal populations, communities, or food webs. The acknowledgement that several confounding factors may have limited researchers’ abilities to detect negative ecosystem-level impacts following the DwH spill drives the need for direct testing of weathered oil exposure effects on estuarine residents with high trophic connectivity. Here, we describe an experiment that examined the influence of previous exposure to four weathered oil concentrations (control: 0.0 L oil m−2; low: 0.1 L oil m−2; moderate: 0.5–1 L oil m−2; high: 3.0 L oil m−2) on foraging rates of the ecologically important Gulf killifish (Fundulus grandis). Following exposure in oiled saltmarsh mesocosms, killifish were allowed to forage on grass shrimp (Palaeomonetes pugio) for up to 21 h. We found that previous exposure to the high oil treatment reduced killifish foraging rate by ~37% on average, compared with no oil control treatment. Previous exposure to the moderate oil treatment showed highly variable foraging rate responses, while low exposure treatment was similar to unexposed responses. Declining foraging rate responses to previous high weathered oil exposure suggests potential oil spill influence on energy transfer between saltmarsh and off-marsh systems. Additionally, foraging rate variability at the moderate level highlights the large degree of intraspecific variability for this sublethal response and indicates this concentration represents a potential threshold of oil exposure influence on killifish foraging. We also found that consumption of gravid vs non-gravid shrimp was not independent of prior oil exposure concentration, as high oil exposure treatment killifish consumed ~3× more gravid shrimp than expected. Our study findings highlight the sublethal effects of prior oil exposure on foraging abilities of ecologically valuable Gulf killifish at realistic oil exposure levels, suggesting that important trophic transfers of energy to off-marsh systems may have been impacted, at least in the short-term, by shoreline oiling at highly localized scales. This study provides support for further experimental testing of oil exposure effects on sublethal behavioral impacts of ecologically important estuarine species, due to the likelihood that some ecological ramifications of DwH on saltmarshes likely went undetected.


2021 ◽  
Vol 54 (2) ◽  
pp. 36-43
Author(s):  
Bianca Possamai ◽  
Olímpio Rafael Cardoso ◽  
Barbara Maichak de Carvalho ◽  
Henry Louis Spach

This study reports the importance to evaluate the length-weight relationships (LWR) across the years. We evaluate the LWR for 8 Sciaenidae species of Paranaguá Estuarine Complex, South Brazil, sampled between 2016 and 2018 by bottom trawls similar to the used by artisanal fisheries in this region. There were differences between growth type among the years for 5 species, and all species showed differences in the slope of LWR in at least one year. These results show the importance of fauna and fisheries monitoring programs to better evaluate the population dynamics and fisheries stocks. Keywords: estuarine fish, fisheries biology, marine fish, sciaenid, weight-length relationship


2021 ◽  
Vol 944 (1) ◽  
pp. 012008
Author(s):  
F Supriyadi ◽  
I Jaya ◽  
S Pujiyati ◽  
T Hestirianoto ◽  
Z Fahmi

Abstract Caroun Croaker ( Johnius sp.) is one of the dominant estuarine fish that has a reasonably high economic value. The target strength (TS) value measurement is essential in calculating the density of fish stocks using the hydroacoustic method. Target strength measurement of Caroun Croaker (Johnius sp.) and an acoustic survey in Musi Estuary Waters of South Sumatra Province was conducted in December 2019. The result of TS measurement will be used to estimate the acoustic density along the survey area. The TS measurement used the standard tethered method, tying placing the fish in a fixed cage, transmitting the acoustic pulse, and analyzing its return using the scientific acoustic instrument Biosonic DT-X 200 KHz. The fisheries acoustic survey was carried out in the area around the Musi estuary with a predetermined survey design. The results of the measurements have obtained the TS-length relationship, as TS= 20 LOG L-78.79 with determinant value of R2= 0.67 for fish length ranges from 18.1-23.3 cm, and an acoustic survey showed that the estimated stock density value was 286 kg/ha for the total surveyed area of 1.612 ha.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12280
Author(s):  
Wilson Xieu ◽  
Levi S. Lewis ◽  
Feng Zhao ◽  
Rachel A. Fichman ◽  
Malte Willmes ◽  
...  

Background The application of otolith-based tools to inform the management and conservation of fishes first requires taxon- and stage-specific validation. The Delta Smelt (Hypomesus transpacificus), a critically endangered estuarine fish that is endemic to the upper San Francisco Estuary (SFE), California, United States, serves as a key indicator species in the SFE; thus, understanding this species’ vital rates and population dynamics is valuable for assessing the overall health of the estuary. Otolith-based tools have been developed and applied across multiple life stages of Delta Smelt to reconstruct age structure, growth, phenology, and migration. However, key methodological assumptions have yet to be validated, thus limiting confidence in otolith-derived metrics that are important for informing major water management decisions in the SFE. Methods Using known-age cultured Delta Smelt and multiple independent otolith analysts, we examined otolith formation, otolith-somatic proportionality, aging accuracy and precision, left-right symmetry, and the effects of image magnification for larval, juvenile, and adult Delta Smelt. Results Overall, otolith size varied linearly with fish size (from 10–60 mm), explaining 99% of the variation in fish length, despite a unique slope for larvae < 10 mm. Otolith-somatic proportionality was similar among wild and cultured specimens. Aging precision among independent analysts was 98% and aging accuracy relative to known ages was 96%, with age estimates exhibiting negligible differences among left and right otoliths. Though error generally increased with age, percent error decreased from 0–30 days-post-hatch, with precision remaining relatively high (≥ 95%) thereafter. Increased magnification (400×) further improved aging accuracy for the oldest, slowest-growing individuals. Together, these results indicate that otolith-based techniques provide reliable age and growth reconstructions for larval, juvenile, and adult Delta Smelt. Such experimental assessments across multiple developmental stages are key steps toward assessing confidence in otolith-derived metrics that are often used to assess the dynamics of wild fish populations.


Author(s):  
Andriwibowo Andriwibowo ◽  
Adi Basukriadi ◽  
Erwin Nurdin

Estuary and river mouth are essential habitats for many commercial estuarine fishes, including the Sciaenidae family. While recently, estuaries have been threatened by anthropogenic marine litter (AML) transported from nearby land and river. An important type of AML is plastic litter since it takes a long degradation time. In the South Sumatra Province, Indonesia, one of the vital estuaries is the Musi estuary. This paper aims to map the spatial distributions of two Sciaenids, including Panna microdon and Otolithoides pama, and Sciaenid’s environmental covariates, including water quality, chlorophyll a, and plastic litters in Musi estuary and model the correlations of Sciaenids with their covariates. The maps were developed using GIS, and the model was validated using AIC methods. The data were collected from 3 river mouths in the west, central, and east of the Musi estuary. The data showed that the populations of both Sciaenids were higher in the east river mouth rather than in the west. Sciaenid populations were positively correlated with high salinity, DO, chlorophyll a, moderate transparency, and low temperature. A high load of AML’s frequency (7.54 items/m2) and weights (36.8 gram/m2) has reduced both Sciaenid populations in the central river mouth of the estuary. In contrast, low AML loads in the east have correlated with high Sciaenid populations. Model selection based on AIC values shows the best model for P.microdon retained an effect of AML weight with AIC values of 22.591 and 28.321 for O. pama. This concludes that the weight of plastic litter in estuary water was the main limiting factor for Sciaenid populations in Musi.


2021 ◽  
Vol 8 ◽  
Author(s):  
Goutam Kumar Kundu ◽  
Changseong Kim ◽  
Dongyoung Kim ◽  
Riaz Bibi ◽  
Heeyong Kim ◽  
...  

Trophic contributions of diverse OM sources to estuarine and coastal food webs differ substantially across systems around the world, particularly for nekton (fish, cephalopods, and crustaceans), which utilize basal resources from multiple sources over space and time because of their mobility and feeding behaviors at multiple trophic levels. We investigated the contributions of putative OM sources to fish food webs and assessed the spatiotemporal patterns, structures, and trophic connectivity in fish food webs across four seasons from three closely spaced (10–15 km) sites: an estuarine channel (EC), a deep bay (DB), and an offshore (OS) region in Gwangyang Bay, a high-productivity, low-turbidity estuarine embayment off the Republic of Korea. While nearly all previous studies have focused on few representative species, we examined δ13C and δ15N values of whole nekton communities along with dominant benthic macro-invertebrates, zooplankton, and their putative primary food sources. The δ13C and δ15N values coupled with MixSIAR, a Bayesian mixing model, revealed that these communities utilized multiple primary producers, but phytoplankton comprised the primary trophic contributor (46.6–69.1%). Microphytobenthos (15.8–20.4%) and the seagrass Zostera marina (8.6–19.8%) made substantial contributions, but the role of river-borne terrestrial organic matter was negligible. Spatially different species composition and stable isotope values, but higher utilization of coastal phytoplankton by estuarine fish, indicated disparate food webs structures between the EC and DB/OS coastal areas, with considerable trophic connectivity. Greater overlaps in fish and cephalopod isotopic niches than among other consumers and a higher estimated carbon trophic enrichment factor for EC nekton confirmed feeding migration-mediated biological transport of coastal OM sources to the estuary. Further, the seasonally consistent structures and resource utilization patterns indicate that fish food webs are resilient to changes at lower trophic levels. Our results contrast with those for other highly turbid coastal systems depending highly on diversified basal sources, including exported terrestrial and wetland detritus alongside autochthonous phytoplankton. Finally, this study provides a novel perspective on the role of OM sources in such low turbidity and highly productive coastal embayments and enhances our understanding of marine ecosystems.


Toxics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 246
Author(s):  
I-Cheng Lu ◽  
How-Ran Chao ◽  
Wan-Nurdiyana-Wan Mansor ◽  
Chun-Wei Peng ◽  
Yi-Chyun Hsu ◽  
...  

Due to the sparsity in knowledge, we investigated the presence of various estrogenic endocrine-disrupting chemicals (EEDCs), including phthalates (PAEs), bisphenol-A (BPA), and nonylphenol (NP), as well as microplastics (MPs) in samples of the most widely consumed fish collected from different estuaries in northern Taiwan. We then proceeded to determine the likely contribution that this exposure has on the potential for health impacts in humans following consumption of the fish. Six hundred fish caught from five river estuaries (producing 130 pooled samples) were analyzed to determine how different factors (such as the river, benthic, pelagic, and migratory species) influence EEDCs’ contamination and the possible impacts on human health following typical consumption patterns. The predominant EEDCs was diethyl phthalates (DEP), bis (2-ethylhexyl) phthalates (DEHP), and di-iso-nonylphthalate (DINP) in fish, present at 52.9 ± 77.3, 45.3 ± 79.8, and 42.5 ± 79.3 ng/g dry weight (d.w.), respectively. Residual levels of NP, BPA, and MPs in the fish were 17.4 ± 29.1 and 1.50 ± 2.20 ng/g d.w. and 0.185 ± 0.338 mg/g d.w., respectively. EEDCs and MPs levels varied widely among the five river estuaries sampled due, in part, to differences in habitat types and the associated diversity of fish species sampled. For DEP, the Lao-Jie River and pelagic environments produced the most severely contaminated fish species, respectively. DEP residues were also associated with the burden of MPs in the fish. Based on our analysis, we predict no substantial direct human health risk by EEDCs based on typical consumption rates of estuarine fish by the Taiwanese people. However, other sources of EEDC exposure cannot be ignored.


Author(s):  
Jason Toy ◽  
Kristy Kroeker ◽  
Cheryl Logan ◽  
Yuichiro Takeshita ◽  
Giacomo Bernardi

Acidification-induced changes in cognitive function and behavior have recently been documented in tropical marine fishes, raising concerns about related shifts in species interactions. Here, we investigate whether similar patterns of broad neurological impacts are observed in a temperate Pacific fish that experiences regular and often large shifts in environmental pH due to upwelling events and other natural phenomena. In two manipulative laboratory experiments, we tested the effect of acidification, as well as pH variability, on gene expression in the brain tissue of a common temperate kelp forest/estuarine fish, Embiotoca jacksoni. We found that patterns of global gene expression in brain tissue differed significantly across pH level treatments. Additionally, differential gene expression analysis and gene set enrichment analysis identified significant differential expression of specific genes and gene sets both in comparisons of static pH level treatments as well as in static vs. variable pH treatment comparisons where mean pH was consistent. Enriched gene sets included those related to ion transport, signaling pathways, mRNA processing and splicing, and epigenetic regulation of gene expression, among others. Importantly, we found that pH variability decreased the number of differentially expressed genes detected between high and low pH treatments, and that the inter-individual variability in gene expression was significantly greater in variable pH treatments than static treatments of the same mean pH. By demonstrating a broad shift in brain gene expression, these results provide important confirmation of neurological impacts of acidification in a temperate fish species, which are likely to translate to shifts in behavior. This study also provides critical insight into the potential of natural environmental variability to mediate the impacts of ocean acidification.


Author(s):  
Erika Belarmino da Silva ◽  
Marcelo Francisco de Nóbrega ◽  
Alice Marlene Grimm ◽  
Margareth da Silva Copertino ◽  
João Paes Vieira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document