Effect of superabsorbent polymer on the foam-stability of foamed concrete

Author(s):  
Xiong Yuanliang ◽  
Zhang Chao ◽  
Chen Chun ◽  
Zhang Yamei
2018 ◽  
Vol 143 ◽  
pp. 02005
Author(s):  
Nikolay Mashkin ◽  
Ekaterina Bartenjeva ◽  
Rustam Mansurov

The paper is dedicated to investigation on improvement of thermal insulation properties of non-autoclaved concrete by increasing aggregate stability of foamed concrete mixture. The study demonstrates influence of mineral admixtures on the foam stability index in the mortar mixture and on decrease of foamed concrete density and thermal conductivity. The effect of mineral admixtures on thermal conductivity properties of non-autoclaved concrete was assessed through different ways of their addition: to the foam and to the mortar mixture. The admixtures were milled up to the specific surface area of 300 and 600 m2/kg using an AГO-9 centrifugal attrition mill with continuous operation mode (Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk). Laboratory turbulent foam concrete mixer was used to prepare foamed concrete. Thermal conductivity coefficient was defined by a quick method using “ИTП-MГ 4 “Zond” thermal conductivity meter in accordance with the regulatory documents. The impact of modifiers on the foam structure stability was defined using the foam stability index for the mortar mixture. The research demonstrated the increase in stability of porous structure of non-autoclaved concrete when adding wollastonite and diopside. Improvement of thermal and physical properties was demonstrated, the decrease of thermal conductivity coefficient reaches 0.069 W/(m×°C)


2021 ◽  
pp. 103884
Author(s):  
Seung Cho ◽  
Algurnon van Rooyen ◽  
Elsabe Kearsley ◽  
Gideon van Zijl

2021 ◽  
Vol 27 ◽  
pp. 102361
Author(s):  
Lixia Guo ◽  
Fangfang Zhang ◽  
Ling Zhong ◽  
Lei Guo ◽  
Lunyan Wang ◽  
...  

2021 ◽  
Vol 329 ◽  
pp. 115534
Author(s):  
Yue Jia ◽  
Xiangfeng Guo ◽  
Lihua Jia ◽  
Zhenlong Zhao ◽  
Rui Yang ◽  
...  
Keyword(s):  

Author(s):  
Zuhair AlYousef ◽  
Subhash Ayirala ◽  
Majed Almubarak ◽  
Dongkyu Cha

AbstractGenerating strong and stable foam is necessary to achieve in-depth conformance control in the reservoir. Besides other parameters, the chemistry of injection water can significantly impact foam generation and stabilization. The tailored water chemistry was found to have good potential to improve foam stability. The objective of this study is to extensively evaluate the effect of different aqueous ions in the selected tailored water chemistry formulations on foam stabilization. Bulk and dynamic foam experiments were used to evaluate the impact of different tailored water chemistry aqueous ions on foam generation and stabilization. For bulk foam tests, the stability of foams generated using three surfactants and different aqueous ions was analyzed using bottle tests. For dynamic foam experiments, the tests were conducted using a microfluidic device. The results clearly demonstrated that the ionic content of aqueous solutions can significantly affect foam stabilization. The results revealed that the foam stabilization in bulk is different than that in porous media. Depending on the surfactant type, the divalent ions were found to have stronger influence on foam stabilization when compared to monovalent ions. The bulk foam results pointed out that the aqueous solutions containing calcium chloride salt (CaCl2) showed longer foam life with the anionic surfactant and very weak foam with the nonionic surfactant. The solutions with magnesium chloride (MgCl2) and CaCl2 salts displayed higher impact on foam stability in comparison with sodium chloride (NaCl) with the amphoteric alkyl amine surfactant. Less stable foams were generated with aqueous solutions comprising of both magnesium and calcium ions. In the microfluidic model, the solutions containing MgCl2 showed higher resistance to gas flow and subsequently higher mobility reduction factor for the injection gas when compared to those produced using NaCl and CaCl2 salts. This experimental study focusing about the role of different aqueous ions in the injection water on foam could help in better understanding the foam stabilization process. The new knowledge gained can also enable the selection and optimization of the right injection water chemistry and suitable chemicals for foam field applications.


Sign in / Sign up

Export Citation Format

Share Document