Grain-boundary diffusion coefficient in α-Al2O3 from spark plasma sintering tests: Evidence of collective motion of charge disconnections

2018 ◽  
Vol 44 (15) ◽  
pp. 19044-19048 ◽  
Author(s):  
Yoshihiro Tamura ◽  
Eugenio Zapata-Solvas ◽  
Bibi Malmal Moshtaghioun ◽  
Diego Gómez-García ◽  
Arturo Domínguez-Rodríguez
2012 ◽  
Vol 38 (5) ◽  
pp. 4385-4389 ◽  
Author(s):  
Hanna Borodianska ◽  
Dmytro Demirskyi ◽  
Yoshio Sakka ◽  
Petre Badica ◽  
Oleg Vasylkiv

2021 ◽  
Vol 67 (5) ◽  
pp. 1395-1407
Author(s):  
A. S. Semenov ◽  
J. Trapp ◽  
M. Nöthe ◽  
O. Eberhardt ◽  
B. Kieback ◽  
...  

AbstractIn the present research, a numerical modeling approach of the initial stage of consolidation during spark plasma sintering on the microscopic scale is presented. The solution of a fully coupled thermo-electro-mechanical problem also accounting for grain boundary and surface diffusion is found by using a staggered way. The finite-element method is applied for solving the thermo-electro-mechanical problem while the finite-difference method is applied for the diffusion problem. A Lagrange-based non-linear formulation is used to deal with the detailed description of plastic and creep strain accumulation. The numerical model is developed for simulating the structural evolution of the involved particles during sintering of powder compacts taking into account both the free surface diffusion of the particles and the grain boundary diffusion at interparticle contact areas. The numerical results obtained by using the two-particle model—as a representative volume element of the powder—are compared with experimental results for the densification of a copper powder compact. The numerical and experimental results are in excellent agreement.


2018 ◽  
Vol 103 (9) ◽  
pp. 1354-1361 ◽  
Author(s):  
Hongzhan Fei ◽  
Sanae Koizumi ◽  
Naoya Sakamoto ◽  
Minako Hashiguchi ◽  
Hisayoshi Yurimoto ◽  
...  

2009 ◽  
Vol 24 (1) ◽  
pp. 179-186 ◽  
Author(s):  
G. Bernard-Granger ◽  
C. Guizard

Spark plasma sintering (SPS) of a codoped α-alumina powder has been investigated at temperatures between 850 and 1200 °C. The “grain size versus relative density” trajectory showed a significant grain growth as soon as the residual porosity closed. The densification mechanism was determined by anisothermal (investigation of the heating part of a SPS run) and isothermal methods. It was proposed that grain-boundary sliding, accommodated by oxygen grain-boundary diffusion, governed densification.


Sign in / Sign up

Export Citation Format

Share Document