grain boundary sliding
Recently Published Documents


TOTAL DOCUMENTS

1088
(FIVE YEARS 116)

H-INDEX

58
(FIVE YEARS 6)

2022 ◽  
Vol 16 (1) ◽  
pp. 143-158
Author(s):  
Timm Schultz ◽  
Ralf Müller ◽  
Dietmar Gross ◽  
Angelika Humbert

Abstract. Simulation approaches to firn densification often rely on the assumption that grain boundary sliding is the leading process driving the first stage of densification. Alley (1987) first developed a process-based material model of firn that describes this process. However, often so-called semi-empirical models are favored over the physical description of grain boundary sliding owing to their simplicity and the uncertainties regarding model parameters. In this study, we assessed the applicability of the grain boundary sliding model of Alley (1987) to firn using a numeric firn densification model and an optimization approach, for which we formulated variants of the constitutive relation of Alley (1987). An efficient model implementation based on an updated Lagrangian numerical scheme enabled us to perform a large number of simulations to test different model parameters and identify the simulation results that best reproduced 159 firn density profiles from Greenland and Antarctica. For most of the investigated locations, the simulated and measured firn density profiles were in good agreement. This result implies that the constitutive relation of Alley (1987) characterizes the first stage of firn densification well when suitable model parameters are used. An analysis of the parameters that result in the best agreement revealed a dependence on the mean surface mass balance. This finding may indicate that the load is insufficiently described, as the lateral components of the stress tensor are usually neglected in one-dimensional models of the firn column.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7760
Author(s):  
Jia Fu ◽  
Su Chen

In the present study, different solid solution and aging processes of as-cast and as-compressed ZM6 (Mg2.6Nd0.4Zn0.4Zr) alloy were designed, and the microstructure and precipitation strengthening mechanisms were discussed. After the pre-aging treatment, a large amount of G.P. zones formed in the α-Mg matrix over the course of the subsequent secondary G.P. prescription, where the fine and dispersed Mg12(Nd,Zn) phases were precipitated at the grain boundaries. The pre-aging and secondary aging processes resulted in the Mg12(Nd, Zn) phase becoming globular, preventing grain boundary sliding and decreasing grain boundary diffusion. Meanwhile, precipitation phase â″(Mg3Nd) demonstrated a coherent relationship with the α-Mg matrix after the pre-aging process, and after the secondary aging phase, Mg12Nd increases and became semi-coherent in the matrix. Compared to an as-cast ZM6 alloy, the yield strength of the as-compressed ZM6 alloy increased sharply due to an increase in the yield strength that was proportional to the particle spacing, where the dislocation bypassed the second phase particle. Compared to the single-stage aging process, the two-stage aging process greatly improved the mechanical properties of both the as-cast and as-compressed ZM6 alloys. The difference between the as-cast and as-compressed states is that an as-compressed ZM6 alloy with more dislocations and twins has more dispersed precipitates in the G.P. zones after secondary aging, meaning that it is greatly strengthened after the two-stage aging treatment process.


PAMM ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Timm Schultz ◽  
Ralf Müller ◽  
Dietmar Gross ◽  
Angelika Humbert

2021 ◽  
Author(s):  
Dripta Dutta ◽  
Santanu Misra ◽  
David Mainprice

We investigated an experimentally sheared (γ = 15, γ ̇ = 3 x 10-4s-1, 300 MPa, 750°C) quartz-muscovite aggregate to understand the deformation of parent and new crystals in partially molten rocks. The SEM and EBSD analyses along the longitudinal axial section of the cylindrical sample suggest that quartz and muscovite melted partially and later produced K-feldspar, ilmenite, biotite, mullite, and cordierite. Quartz grains became finer, and muscovite was almost entirely consumed in the process. With increasing , melt and crystal fractions decreased and increased, respectively. Amongst the new minerals, K-feldspar grains (highest area fraction and coarsest) nucleated first, whereas cordierite and mullite grains, finest and least in number, respectively, nucleated last. Fine grain size, weak CPOs, low intragranular deformation, and equant shapes suggest both initial and new minerals deformed dominantly by melt-assisted grain boundary sliding, which is further substantiated by higher misorientations between adjacent grains of quartz, K-feldspar, and ilmenite.


InterConf ◽  
2021 ◽  
pp. 341-348
Author(s):  
P. Volosevish ◽  
B. Mordyuk

This paper considers the stress-dependent fatigue life of polycrystalline materials and their fatigue failure as a result of the relaxation processes that occurred on the stress risers of various scales: macroscopic stress risers of technological nature (pores, cracks, surface roughness, etc.), and microscopic stress risers at the grain/subgrain boundaries and/or second phase particles. Participation of the relaxation mechanisms plastic (vacancies and dislocation activities, grain boundary sliding) and brittle (cracks) nature in the process of the ‘fish eye’ fatigue crack formation is also addressed. The model described the parabolic dependencies of the densities of elementary carriers of plastic and brittle relaxations on the load change rate (i.e., on the growth rate of the stresses concentrated at the vertices of the stress risers) correlates well to the fatigue life data observed for the surface-modified metallic materials.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1766
Author(s):  
Abdul Malik ◽  
Umer Masood Chaudry ◽  
Kotiba Hamad ◽  
Tea-Sung Jun

In this study, an overview of microstructure features such as grain size, grain structure, texture and its impact on strain rate sensitivity, strain hardening index, activation energy and thermal stability for achieving superplasticity of Mg alloys are presented. The deformation behavior under different strain rates and temperatures was also elaborated. For high elongation to fracture grain boundary sliding, grain boundary diffusion is the dominant deformation mechanism. In contrast, for low-temperature and high strain rate superplasticity, grain boundary sliding and solute drag creep mechanism or viscous glide dislocation followed by GBS are the dominant deformations. In addition, the results of different studies were compared, and optimal strain rate and temperature were diagnosed for achieving excellent high strain rate superplasticity.


2021 ◽  
Author(s):  
◽  
Matthew P Hill

<p><b>Arrays of brittle-ductile shears exposed in the Southern Alps of New Zealand, haveprovided a superb natural laboratory for insight into the microstructural evolution of lowercrustal shear zones during exhumation. Shears are exposed in the central section of theSouthern Alps at Sam Peak, Chancellor Ridge, and Baumann Glacier in a zone ~2 kmwide that is located 6–8 km structurally above the Alpine Fault. An array ofsystematically spaced shear zones that formed by embrittlement and faulting ofquartzofeldspathic schist took place at the same time as ductile shearing of quartzcarbonateveins embedded within the schist. This study has used field-based structuralmapping along with optical microscopy and universal stage measurements ofcrystallographic preferred orientations (CPO) to resolve the shear zone kinematics andrheology. On the basis of these data, the strain path can be reconstructed for the shearedveins during their progressive deformation. This began with their incidence as backshearsat the base of the Alpine Fault ramp and ended with their subsequent recrystallisation,uplift, and exhumation.</b></p> <p>The near-vertical shear planes have mean orientation of 221@89 NW ± 1o (n =780). They are inferred to have formed as backshears accommodating uplift of the PacificPlate as it was translated onto the oblique footwall ramp of the Alpine Fault during lateCenozoic oblique convergence. Detailed fault offset transect surveys across the shears atChancellor Ridge and Baumann Glacier reveal a mean spacing between the shear zones of25 ± 5 cm (n = 410). Quartz-carbonate marker veins are displaced in a dextral west-sideupshear sense. Fault offset geometry and a consistent arrangement of mineral fibrelineations that decorate fault surfaces, indicate that the mean displacement vector pitches35o SW in the shear plane (trend and plunge of: 262, 35 ± 7o). Ductilely deformed markerveins have been subject to a mean displacement of 9.9 ± 1.4 cm (n = 344) and a meanfinite ductile shear strain of 4.8 ± 0.3 (n = 219). A strain-rate for the ductile deformationof the veins is estimated at 3 x 10-11 sec-1 based on the observed finite ductile shear strain,an escalator kinematic model, and assumptions about the width of the deforming zone.</p> <p>Five deformation phases have affected the sheared veins during their transport upthe fault ramp: 1) initial brittle faulting and ductile shearing; 2) grain boundary sliding ofmylonitic quartz in response to a post-ramping differential stress drop; 3) recrystallisationand grain growth; 4) renewed late-stage dislocation creep; and 5) semibrittle deformationand exhumation. In the schist, the shears initiated as planar brittle faults at lower crustal depths of~21 km at a temperature of 450 ± 50oC. They developed in a zone of transiently highshear strain-rates near the base of the Alpine Fault ramp. Dislocation creep caused a CPOof quartz and calcite to develop in sheared veins. Using the flow law of Hirth et al. (2001)and the estimated strain-rate, a differential stress of ~165 MPa is inferred for ductiledeformation of the veins. Near-lithostatic (λ = 0.85) fluid pressures would have causedthe rocks to undergo brittle failure, a situation that is confirmed by a late component ofbrittle deformation that over prints the ductilely sheared veins. Syntectonic quartz-calciteveins infill the shear fractures, and these themselves have been sheared. The deformationof the veins was not a simple shear process but one with triclinic flow symmetry. This isinferred from discordance between the shear direction and the near-vertical principleextension direction that is revealed by the pattern and symmetry of quartz and calcite CPOfabrics.</p> <p>After the shears move away from the ramp-step, grain boundary sliding (GBS)accommodated by solid-state diffusion creep is inferred to have affected quartz veins.</p> <p>This deformation mechanism takes place because of 1) the small 8 μm grain size inheritedfrom Phase 1; 2) the presence of fluid in the shear zone; and 3) a stress drop to ~22 MPathat followed the initial up-ramping. Quartz CPO fabrics in the sheared veins areremarkably weak considering their large shear strains. GBS is inferred to have been achief deformation mechanism that caused the weakening of quartz CPO fabrics in thehighly sheared sections of deformed veins. Calcite has also affected the quartz fabricstrength as those veins containing >5% calcite have very weak quartz CPO fabrics. Incontrast to quartz, the CPO fabrics for the co-existing calcite remained strong andcontinued to develop by dislocation creep.</p> <p>The third phase of deformation, a process that may have contributed to subsequentweakening of quartz CPO fabrics, was recrystallisation and grain growth to 126 μm and anequigranular-polygonal grain shape fabric. This fabric was overprinted by late-stagedislocation creep microstructures in the fourth deformation phase in response increaseddifferential stress encountered by the rocks at lower temperatures in the upper crust. Thefinal phase of deformation to affect the sheared veins was semibrittle deformation atdifferential stresses of <189 MPa and temperatures of 200–280oC as the rocks passedthrough the steady-state brittle-ductile transition zone at depths of 8–10 km before beingexhumed at the surface.</p>


2021 ◽  
Author(s):  
◽  
Matthew P Hill

<p><b>Arrays of brittle-ductile shears exposed in the Southern Alps of New Zealand, haveprovided a superb natural laboratory for insight into the microstructural evolution of lowercrustal shear zones during exhumation. Shears are exposed in the central section of theSouthern Alps at Sam Peak, Chancellor Ridge, and Baumann Glacier in a zone ~2 kmwide that is located 6–8 km structurally above the Alpine Fault. An array ofsystematically spaced shear zones that formed by embrittlement and faulting ofquartzofeldspathic schist took place at the same time as ductile shearing of quartzcarbonateveins embedded within the schist. This study has used field-based structuralmapping along with optical microscopy and universal stage measurements ofcrystallographic preferred orientations (CPO) to resolve the shear zone kinematics andrheology. On the basis of these data, the strain path can be reconstructed for the shearedveins during their progressive deformation. This began with their incidence as backshearsat the base of the Alpine Fault ramp and ended with their subsequent recrystallisation,uplift, and exhumation.</b></p> <p>The near-vertical shear planes have mean orientation of 221@89 NW ± 1o (n =780). They are inferred to have formed as backshears accommodating uplift of the PacificPlate as it was translated onto the oblique footwall ramp of the Alpine Fault during lateCenozoic oblique convergence. Detailed fault offset transect surveys across the shears atChancellor Ridge and Baumann Glacier reveal a mean spacing between the shear zones of25 ± 5 cm (n = 410). Quartz-carbonate marker veins are displaced in a dextral west-sideupshear sense. Fault offset geometry and a consistent arrangement of mineral fibrelineations that decorate fault surfaces, indicate that the mean displacement vector pitches35o SW in the shear plane (trend and plunge of: 262, 35 ± 7o). Ductilely deformed markerveins have been subject to a mean displacement of 9.9 ± 1.4 cm (n = 344) and a meanfinite ductile shear strain of 4.8 ± 0.3 (n = 219). A strain-rate for the ductile deformationof the veins is estimated at 3 x 10-11 sec-1 based on the observed finite ductile shear strain,an escalator kinematic model, and assumptions about the width of the deforming zone.</p> <p>Five deformation phases have affected the sheared veins during their transport upthe fault ramp: 1) initial brittle faulting and ductile shearing; 2) grain boundary sliding ofmylonitic quartz in response to a post-ramping differential stress drop; 3) recrystallisationand grain growth; 4) renewed late-stage dislocation creep; and 5) semibrittle deformationand exhumation. In the schist, the shears initiated as planar brittle faults at lower crustal depths of~21 km at a temperature of 450 ± 50oC. They developed in a zone of transiently highshear strain-rates near the base of the Alpine Fault ramp. Dislocation creep caused a CPOof quartz and calcite to develop in sheared veins. Using the flow law of Hirth et al. (2001)and the estimated strain-rate, a differential stress of ~165 MPa is inferred for ductiledeformation of the veins. Near-lithostatic (λ = 0.85) fluid pressures would have causedthe rocks to undergo brittle failure, a situation that is confirmed by a late component ofbrittle deformation that over prints the ductilely sheared veins. Syntectonic quartz-calciteveins infill the shear fractures, and these themselves have been sheared. The deformationof the veins was not a simple shear process but one with triclinic flow symmetry. This isinferred from discordance between the shear direction and the near-vertical principleextension direction that is revealed by the pattern and symmetry of quartz and calcite CPOfabrics.</p> <p>After the shears move away from the ramp-step, grain boundary sliding (GBS)accommodated by solid-state diffusion creep is inferred to have affected quartz veins.</p> <p>This deformation mechanism takes place because of 1) the small 8 μm grain size inheritedfrom Phase 1; 2) the presence of fluid in the shear zone; and 3) a stress drop to ~22 MPathat followed the initial up-ramping. Quartz CPO fabrics in the sheared veins areremarkably weak considering their large shear strains. GBS is inferred to have been achief deformation mechanism that caused the weakening of quartz CPO fabrics in thehighly sheared sections of deformed veins. Calcite has also affected the quartz fabricstrength as those veins containing >5% calcite have very weak quartz CPO fabrics. Incontrast to quartz, the CPO fabrics for the co-existing calcite remained strong andcontinued to develop by dislocation creep.</p> <p>The third phase of deformation, a process that may have contributed to subsequentweakening of quartz CPO fabrics, was recrystallisation and grain growth to 126 μm and anequigranular-polygonal grain shape fabric. This fabric was overprinted by late-stagedislocation creep microstructures in the fourth deformation phase in response increaseddifferential stress encountered by the rocks at lower temperatures in the upper crust. Thefinal phase of deformation to affect the sheared veins was semibrittle deformation atdifferential stresses of <189 MPa and temperatures of 200–280oC as the rocks passedthrough the steady-state brittle-ductile transition zone at depths of 8–10 km before beingexhumed at the surface.</p>


Sign in / Sign up

Export Citation Format

Share Document