interparticle contact
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 1)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wu Qi ◽  
Sun Suyu ◽  
Gao Guangliang ◽  
Fang Yi ◽  
Chen Guoxing

Sand-gravel mixtures are typical binary materials, exhibiting highly heterogeneous, discontinuous, and significant structural effects. The contact state between sand and gravel particles has a significant influence on the mechanical properties of the mixtures. This article focused on the complex internal structure and its mesostructural behavior of the mixtures, and a systematic statistical analysis was carried out to study the shape, size, and angularity of the coarse particles. The three-dimensional (3D) shapes of coarse aggregates were approximated to be hexahedron, pentahedron, and tetrahedron. An indicator called angularity and surface texture (AT) index was developed to characterize the combined effect of the coarse aggregate angularity and surface texture. Based on the screening testing and digital image processing, the particle size and AT index of aggregates were extracted, and their means, standard deviations, and statistical distributions were studied. An algorithm for generating 3D aggregates was developed based on the statistical results of the coarse aggregate 3D morphology. The coarse aggregate generating code was written using the fish language in PFC3D. The numerical model was then applied to conduct three typical monotonic or cyclic triaxial test simulations. Retrospective simulation of the laboratory tests using the proposed model showed good agreement, and the reliability of the model is effectively verified. The results interpreted well the mechanism of particle motion and the distribution of interparticle contact force during shearing from mesoscale of the mixtures, which can give better understanding and modeling of the nonlinear behavior of the sand-gravel mixtures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhong-Fei Xue ◽  
Wen-Chieh Cheng ◽  
Lin Wang

AbstractIn addition to the shearing behavior of soil, the creep character is also considered crucial in determining the long-term shear strength. This especially holds true for the loess that possesses the metastable microstructure and is prone to landslide hazards. This study explored the potential application of straw reinforcement to enhance the shearing and creep properties of the Quaternary loess. The mechanism responsible for the straw reinforcement to elevate the peak shear strength was revealed. Furthermore, three creep characters, namely attenuating creep, non-attenuating creep, and viscous flow were identified in this study. The unreinforced and reinforced specimen behaved in a different manner under identical shear stress ratio condition. The reinforced specimen was superior in limiting the particle relative movement within the shear plane than the unreinforced specimen. The chain reaction of interparticle contact loss, accompanied with excessive viscous displacement, rapid weakening of creep resistance, and eventually accelerated creep displacement, provided an evidence for the formation mechanism of slow-moving landslide. The long-term shear strength using the isochronal stress–strain relationship may be used for optimising the design of high-fill embankment works.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaomeng Duan

It is generally accepted that the adsorbed water layer on the surface of the mineral particle has significant effects on the mechanical properties of soils. By defining the concepts of “solid water” and “particle skeleton” after a brief review on adsorbed water, therefore, the mechanical mechanism about how solid water affects the deformation and strength of particle skeleton is theoretically clarified, which could be the physical basis of the reasonability of two assumptive conditions for effective stress equation. Considering solid water as a two-dimensional liquid with appreciable normal strength and lubricity, if soil particles are always wrapped by solid-water layer, the only mechanical effect due to water pressure is to compress particles; while if the interparticle solid water could be extruded undergoing enough force with suitable confinement, the mechanical effects due to increasing water pressure are not only to compress particles more but also to enhance interparticle friction because the indirect interparticle contact could be changed into direct contact to consequently alter the interparticle friction. Because solid water is not likely to be extruded by pressure alone, if the particle compression is negligible relative to the soil-mass compression, two assumptive conditions for effective stress equation are reasonable. Moreover, a simple monitoring test on water content is conducted to certify that the solid-water layer should always exist in soils under ambient conditions, so the ordinarily oven-dried soil samples used in conventional geotechnical tests carried out under ambient conditions could be just “nominally dry” samples with the effects due to solid water.


2021 ◽  
Vol 9 ◽  
Author(s):  
Norihiro Oyama ◽  
Takeshi Kawasaki ◽  
Kuniyasu Saitoh

The mechanical responses of dense packings of soft athermal spheres under a finite-rate shear are studied by means of molecular dynamics simulations. We investigate the volume fraction and shear rate dependence of the fluctuations in the shear stress and the interparticle contact number. In particular, we quantify them by defining the susceptibility as the ratio of the global to local fluctuations. The obtained susceptibilities form ridges on the volume fraction-shear rate plane, which are reminiscent of the Widom lines around the critical point in an equilibrium phase transition.


2021 ◽  
Vol 67 (5) ◽  
pp. 1395-1407
Author(s):  
A. S. Semenov ◽  
J. Trapp ◽  
M. Nöthe ◽  
O. Eberhardt ◽  
B. Kieback ◽  
...  

AbstractIn the present research, a numerical modeling approach of the initial stage of consolidation during spark plasma sintering on the microscopic scale is presented. The solution of a fully coupled thermo-electro-mechanical problem also accounting for grain boundary and surface diffusion is found by using a staggered way. The finite-element method is applied for solving the thermo-electro-mechanical problem while the finite-difference method is applied for the diffusion problem. A Lagrange-based non-linear formulation is used to deal with the detailed description of plastic and creep strain accumulation. The numerical model is developed for simulating the structural evolution of the involved particles during sintering of powder compacts taking into account both the free surface diffusion of the particles and the grain boundary diffusion at interparticle contact areas. The numerical results obtained by using the two-particle model—as a representative volume element of the powder—are compared with experimental results for the densification of a copper powder compact. The numerical and experimental results are in excellent agreement.


2021 ◽  
Vol 249 ◽  
pp. 09008
Author(s):  
Alejandro López ◽  
Agostino Walter Bruno ◽  
Sadegh Nadimi

This paper presents a Computational Fluid Dynamics (CFD) model on the effect of capillary pressure on the retention behaviour of a granular material. The model proposes an unprecedented CFD insight into the onset of liquid menisci at the inter-particles contact under varying hydraulic conditions. The present work models the material grains as smooth spherical particles that define a porous network filled by two interstitial fluids: air and silicon oil. The numerical model has been subsequently validated against experimental measurements of the degree of saturation at different capillary pressures taken by Dullien et al. [F.A. Dullien, C. Zarcone, I.F. MacDonald, A. Collins, R.D. Bochard. J. Colloid Interface Sci. 127, 2 (1989)] in a system of smooth glass beads flooded with silicon oil. Results from the numerical simulations confirm the good capability of the model to reproduce the experimental retention behaviour of the granular material. Finally, the present paper laid the basis for future CFD studies on the effect of various factors (e.g. hydraulic hysteresis, surface roughness and/or grain shape) on the capillary pressure acting at the interparticle contact.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1653
Author(s):  
Huaijiu Deng ◽  
Jian Dong ◽  
Filippo Boi ◽  
Theo Saunders ◽  
Chunfeng Hu ◽  
...  

In the past decade, a renewed interest on electromagnetic processing of materials has motivated several investigations on the interaction between matter, electric and magnetic fields. These effects are primarily reconducted to the Joule heating and very little attention has been dedicated to the magnetic field contributions. The magnetic field generated during electric current-assisted sintering has not been widely investigated. Magnetism could have significant effects on sintering as it generates significant magnetic forces, resulting in inductive electrical loads and preferential heating induced by overlapping magnetic fields (i.e., proximity effect). This work summarizes the magnetic field effects in electric current-assisted processing; it focuses on health and safety issues associated with large currents (up to 0.4 MA); using FEM simulations, it computes the self-generated magnetic field during spark plasma sintering (SPS) to consolidate materials with variable magnetic permeability; and it quantifies the Lorentz force acting at interparticle contact points. The results encourage one to pay more attention to magnetic field-related effects in order to engineer and exploit their potentials.


2020 ◽  
pp. 51-54
Author(s):  
M. A. S. Quintanilla ◽  
A. Castellanos ◽  
J. M. Valverde

2020 ◽  
Vol 57 (9) ◽  
pp. 1369-1387 ◽  
Author(s):  
A. Khosravi ◽  
A. Martinez ◽  
J.T. DeJong

This paper presents a study on the simulation of cone penetration tests (CPTs) using the discrete element model (DEM) method. This study’s main objective is to investigate the effect of different modeling parameters and simulation configurations on the ability of three-dimensional DEM simulations to replicate realistic CPT tip resistance (qc) and friction sleeve shear stress (fs) measurements. The CPT tests were simulated in virtual calibration chambers (VCCs) containing particles calibrated to model the behavior of sand. The parameters investigated included the granular assembly properties, interparticle contact parameters, particle–probe interface characteristics, and simulation configuration. Results indicate that the interparticle contact parameters, boundary conditions, and void ratio have an important role in the tip resistance and friction sleeve measurements obtained from the simulations. Particle-level interactions such as particle displacements and rotations and interparticle contact forces were analyzed throughout to provide insight into the differences in measured CPT response. Interpretation of the qc and fs measurements using soil behavior type (SBT) charts for soil classification indicates that the simulated CPT response is representative of the response of coarse-grained soils measured during field soundings. Analysis of results within the SBT framework can provide insight into the influence of soil particle properties on CPT-based soil classification.


2019 ◽  
Vol 11 (1) ◽  
pp. 829-836
Author(s):  
Ian Smalley ◽  
Samson Ng’ambi

Abstract A collapsible soil is composed essentially of a packing of mineral particles and a set of interparticle bonds holding the system together. Failure requires the bond system to fail and the soil structure to collapse. A natural hazard is presented. The soil structure may collapse inwards (consolidate), as in loess failure, or it may collapse outwards (disperse, disintegrate), as in the failure of quick-clays, some collapsing sands, some silty estuarine deposits, and in wind erosion of silty soils by saltating sand grains. Generalising about bonding systems allows two types of interparticle bond to be recognized: long range bonds and short range bonds. Long range bonds are found in clay mineral systems and allow the occurrence of plasticity. They are represented by c in the standard Coulomb equation. Short range bonds are found in inactive particle systems. These are soil systems where the constituent particles do not have a significant electrical charge. A slight deformation of a short-range bonded system causes much loss of strength. It is short range bonds which tend to dominate in collapsing soil systems, although in the complex case of loess the bond failure is initially mediated by long range bonds at the interparticle contact regions. A collapse failure involves a large scale remaking of the soil structure, and thus total failure of the bonding system. Generalising again- it can be claimed that five types of particle make up engineering soils: A active clay mineral particles (the smectites), B inactive clay mineral particles (e.g. kaolinite, illite), C very small inactive primary mineral particles (close to the comminution limit in size- mostly in the quick-clays), D silt (usually quartz silt), and E sand (usually quartz sand). The nature of type D particles contributes to the collapse of loess soils, the most widespread of the collapsing soil phenomena. The nature of type C particles controls the behaviour of quick-clays. C and D systems are essentially dominated by short-range bonds.


Sign in / Sign up

Export Citation Format

Share Document