boundary diffusion coefficient
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

2018 ◽  
Vol 44 (15) ◽  
pp. 19044-19048 ◽  
Author(s):  
Yoshihiro Tamura ◽  
Eugenio Zapata-Solvas ◽  
Bibi Malmal Moshtaghioun ◽  
Diego Gómez-García ◽  
Arturo Domínguez-Rodríguez

2018 ◽  
Vol 103 (9) ◽  
pp. 1354-1361 ◽  
Author(s):  
Hongzhan Fei ◽  
Sanae Koizumi ◽  
Naoya Sakamoto ◽  
Minako Hashiguchi ◽  
Hisayoshi Yurimoto ◽  
...  

2015 ◽  
Vol 363 ◽  
pp. 137-141 ◽  
Author(s):  
Dan Dan Liu ◽  
Jochen Fiebig ◽  
Martin Peterlechner ◽  
Simon Trubel ◽  
Matthias Wegner ◽  
...  

The radiotracer technique was used to measure the grain boundary diffusion of44Ti and63Ni in slightly Ni-rich polycrystalline NiTi compound in the temperature range of 673 - 923 K. The temperature dependence of the grain boundary triple productP(P=sδDgb,sis the segregation coefficient,δis the grain boundary width, andDgbis the grain boundary diffusion coefficient) for Ti and Ni was determined. The triple products of both Ti and Ni grain boundary diffusion in NiTi reveal a unique behavior with significant deviations from an Arrhenius-type dependence. Probable evolution of the grain boundary structure with temperature was used to interpret this phenomenon.


2010 ◽  
Vol 1265 ◽  
Author(s):  
Ilaria Marchetti ◽  
Fabio Belloni ◽  
Jerome Himbert ◽  
Paul Carbol ◽  
Thomas Fanghänel

AbstractFollowing containment failure in the scenario of geological disposal of spent nuclear fuel, the penetration rate of groundwater into the UO2 matrix could cause a rapid increase of the fraction of inventory becoming available for prompt dissolution. In this respect, oxygen and water diffusion mechanisms are key issues to investigate. In this work, secondary-ion-mass-spectrometry (SIMS) depth profiling has been applied to characterize a polycrystalline UO2 pellet exposed to 18O-labelled water at room temperature. 18O depth profiling up to 25 μm beneath the pellet surface clearly indicates a combination of oxygen diffusion into the UO2 lattice and water diffusion along grain boundaries, behaving as high diffusivity paths. The lattice diffusion coefficient of oxygen, DL, and the quantity δDB – product of the grain boundary width, δ, and the grain boundary diffusion coefficient of water, DB – have been measured, resulting in DL = (2.5 ± 0.1) × 10-24 m2 s-1 and δDB = (7.5 ± 0.3) × 10-24 m3 s-1.


2008 ◽  
Vol 595-598 ◽  
pp. 529-537 ◽  
Author(s):  
Loïc Marchetti ◽  
Stéphane Perrin ◽  
Olivier Raquet ◽  
Michèle Pijolat

Oxidation mechanism of Alloy 690 has been investigated in Pressurised Water Reactor (PWR) primary coolant conditions (325°C, aqueous hydrogenated media). Experiments performed with gold marker and RBS technique reveal that the passive film formation is the consequence of an anionic mechanism. This result is confirmed by experiments achieved with two sequences of corrosion in a H2 16O media and in a mixed H2 16O/ H2 18O media. The localisation of 18O by SIMS analysis in the thin passive layer underlines an oxidation mechanism due to oxygen diffusion by short circuits (like grain boundaries) in the oxide scale. Moreover grain boundary diffusion coefficient in chromite like oxide was estimated to be in the range 2 10-18 – 1 10-17 cm2.s-1 and compared to values extrapolated from higher temperature.


2005 ◽  
Vol 237-240 ◽  
pp. 266-270 ◽  
Author(s):  
Chan Gyu Lee ◽  
Jung Han Lee ◽  
Byeong Seon Lee ◽  
Yong Ill Lee ◽  
Toshitada Shimozaki ◽  
...  

The impurity diffusion coefficients of Cu in Fe have been determined in the temperature range of 1073 - 1163 K by means of Laser Induced Breakdown Spectrometry (LIBS). The volume diffusion coefficients for Cu impurity diffusion in a-iron found in this work are in good agreement with the previously published result. The grain boundary diffusion coefficient gb D s d was also calculated using the volume diffusivity and processing the tails of the measured profiles. The values of the activation energy for volume and grain boundary diffusion were approximately 280 and 161 kJmol-1, respectively. This indicates the possibility of a monovacancy diffusion mechanism in case of volume diffusion. The results for the diffusion coefficients are Dv= 2.2 ×10-2exp(-280 kJmol-1/RT) m2s-1 and gb D s d = 2.6 ×10-11exp(-161 kJmol-1/RT) m3s-1.


Sign in / Sign up

Export Citation Format

Share Document