globally exponential stability
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Ruofeng Rao

In this paper, by using the variational method, a sufficient condition for the unique existence of the stationary solution of the reaction-diffusion ecosystem is obtained, which directly leads to the global asymptotic stability of the unique equilibrium point. Moreover, delayed feedback ecosystem with reaction-diffusion item is considered, and utilizing impulse control results in the globally exponential stability criterion of the delayed ecosystem. It is worth mentioning that the Neumann zero-boundary value that the infected and the susceptible people or animals should be controlled in the epidemic prevention area and not allowed to cross the border, which is a good simulation of the actual situation of epidemic prevention. And numerical examples illuminate the effectiveness of impulse control, which has a certain enlightening effect on the actual epidemic prevention work . That is, in the face of the epidemic situation, taking a certain frequency of positive and effective epidemic prevention measures is conducive to the stability and control of the epidemic situation. Particularly, the newly-obtained theorems quantifies this feasible step. Besides, utilizing Laplacian semigroup derives the $p$th moment stability criterion for the impulsive ecosystem.



Author(s):  
Ruofeng Rao

In this paper, by using the variational method, a sufficient condition for the unique existence of the stationary solution of the reaction-diffusion ecosystem is obtained, which directly leads to the global asymptotic stability of the unique equilibrium point. Besides, employing impulse control technique derives the globally exponential stability criterion of delayed feedback ecosystem.And numerical examples illuminate the effectiveness of impulse control, which has a certain enlightening effect on the actual epidemic prevention work . That is, in the face of the epidemic situation, taking a certain frequency of positive and effective epidemic prevention measures is conducive to the stability and control of the epidemic situation. particularly, the newly-obtained theorems quantifies this feasible step.



2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Lilun Zhang ◽  
Le Li ◽  
Chuangxia Huang

<p style='text-indent:20px;'>In this study, the stable dynamics of a kind of high-order cellular neural networks accompanying <inline-formula><tex-math id="M1">\begin{document}$ D $\end{document}</tex-math></inline-formula> operators and mixed delays are analyzed. The global existence of bounded positive solutions is substantiated by applying some novel differential inequality analyses. Meanwhile, by exploiting Lyapunov function method, some sufficient criteria are gained to validate the positiveness and globally exponential stability of pseudo almost periodic solutions on the addressed networks. In addition, computer simulations are produced to test the derived analytical findings.</p>



2021 ◽  
Vol 6 (10) ◽  
pp. 11187-11199
Author(s):  
Ramazan Yazgan ◽  

<abstract> <p>In this study, we are concerned the existence of pseudo almost automorphic (PAA) solutions and globally exponential stability of a Duffing equation system with variable delays. Some differential inequalities and the well-known Banach fixed point theorem are used for the existence and uniqueness of PAA solutions. Also, with the help of Lyapunov functions, sufficient conditions are obtained for globally exponential stability of PAA solutions. Since the PAA is more general than the almost and pseudo almost periodicity, this work is new and complementary compared to previous studies. In addition, an example is given to show the correctness of our results.</p> </abstract>



2020 ◽  
Vol 7 (1) ◽  
pp. 249-271
Author(s):  
Manel Amdouni ◽  
Farouk Chérif

AbstractIn the natural world, competition is an important phenomenon that can manifest in various generalized environments (economy, physics, ecology, biology,...). One of the famous models which is able to represent this concept is the Lotka-Volterra model. A new class of a competitive Lotka-Volterra model with mixed delays and oscillatory coefficients is investigated in this work. Thus, by using the (µ, η)-pseudo almost automorphic functions function class and the Leray-Schauder fixed-point theorem, it can be proven that solutions exist. In addition, in such situations, we have a number of species that coexist and all the rest will be extinct. Therefore, the study of permanence becomes unavoidable. Therefore, sufficient and new conditions are given in order to establish the permanence of species without using a comparison theorem. By the new Lyapunov function we prove the asymptotic stability for the considered model. Moreover, we investigate the globally exponential stability of the (µ, η)-pseudo almost automorphic solutions. In the end, an example is given to support theoretical result feasibility.



Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xiaoyan Liu ◽  
Quanxin Zhu

This paper deals with stochastically globally exponential stability (SGES) for stochastic impulsive differential systems (SIDSs) with discrete delays (DDs) and infinite distributed delays (IDDs). By using vector Lyapunov function (VLF) and average dwell-time (ADT) condition, we investigate the unstable impulsive dynamics and stable impulsive dynamics of the suggested system, and some novel stability criteria are obtained for SIDSs with DDs and IDDs. Moreover, our results allow the discrete delay term to be coupled with the nondelay term, and the infinite distributed delay term to be coupled with the nondelay term. Finally, two examples are given to verify the effectiveness of our theories.



Author(s):  
Xiangying Fu ◽  
Fanchao Kong

AbstractThis paper is concerned with a class of bidirectional associative memory (BAM) neural networks with discontinuous activations and time-varying delays. Under the basic framework of differential inclusions theory, the existence result of solutions in sense of Filippov solution is firstly established by using the fundamental solution matrix of coefficients and inequality analysis technique. Also, the boundness of the solutions can be estimated. Secondly, based on the non-smooth Lyapunov-like approach and by construsting suitable Lyapunov–Krasovskii functionals, some new sufficient criteria are given to ascertain the globally exponential stability of the anti-periodic solutions for the proposed neural network system. Furthermore, we have collated our effort with some previous existing ones in the literatures and showed that it can take more advantages. Finally, two examples with numerical simulations are exploited to illustrate the correctness.



Author(s):  
Dihua Sun ◽  
Chao Liu ◽  
Zheng Yang ◽  
Xiaoyang Liu ◽  
Hongyu Yang ◽  
...  

Abstract This paper investigates the globally exponential stability of delayed switched systems via Razumikhin technique. According to mode-dependent dwell average time and multiple Lyapunov functions, new Razumikhin-type stability results are deduced. In contrast to the existing Rzumikhin-type results, the proposed ones are less conservative. In order to demonstrate the applicability, some stability and stabilization results for switched neural networks with time-varying delays are also derived. Several numerical examples are also employed to show the effectiveness and superiority of the obtained results.



2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Shuxin Liu ◽  
Haijun Jiang ◽  
Liwei Zhang ◽  
Xuehui Mei

In the article, the dynamical behaviours of the full-range cellular neural networks (FRCNNs) with variable coefficients and time-varying delays are considered. Firstly, the improved model of the FRCNNs is proposed, and the existence and uniqueness of the solution are studied by means of differential inclusions and set-valued analysis. Secondly, by using the Hardy inequality, the matrix analysis, and the Lyapunov functional method, we get some criteria for achieving the globally exponential stability (GES). Finally, some examples are provided to verify the correctness of the theoretical results.



Sign in / Sign up

Export Citation Format

Share Document