The along-track etching structure of fission tracks in apatite: Observations and implications

2020 ◽  
Vol 553 ◽  
pp. 119809
Author(s):  
Murat T. Tamer ◽  
Richard A. Ketcham
1978 ◽  
Vol 15 (12) ◽  
pp. 1924-1929 ◽  
Author(s):  
Rajinder Parshad ◽  
H. S. Saini ◽  
K. K. Nagpaul

Systematic annealing experiments on fission tracks in phlogopite have been carried out under standard etching conditions to obtain the correction curve for the ages of phlogopite, which might have been lowered due to geological annealing of fossil fission tracks. Variation of fission track density with etching time at different annealing temperatures has been analysed in order to standardize the etching conditions. All the tracks in phlogopite are annealed by heating at 590 °C for 1 h. Extrapolation of experimental data suggests that a temperature of 215 °C would be required for 1 Ma to remove all the tracks. The corrected age of a phlogopite sample from Neyyur village, Kanya Kumari District, India, is 395 ± 20 Ma. The mean values of fission fragment range for induced 235U fission tracks, uranium concentration, activation energy, and an effective paleoisotherm for fission track clock in the Neyyur village phlogopite are 17.7 ± 2.0 μm, 3.12 × 10−9 g/g, 1.8 eV, and 150 °C, respectively.


Geochronology ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 433-464
Author(s):  
Richard A. Ketcham ◽  
Murat T. Tamer

Abstract. We present a new model for the etching and revelation of confined fission tracks in apatite based on variable along-track etching velocity, vT(x). Insights from step-etching experiments and theoretical energy loss rates of fission fragments suggest two end-member etching structures: constant-core, with a central zone of constant etching rate that then falls off toward track tips; and linear, in which etching rates fall linearly from the midpoint to the tips. From these, we construct a characterization of confined track revelation that encompasses all relevant processes, including penetration and widening of semi-tracks etching in from the polished grain surface, intersection with and expansion of confined tracks, and analyst selection of which tracks to measure and which to bypass. Both etching structures are able to fit step-etching data from five sets of paired experiments of fossil tracks and unannealed and annealed induced tracks in Durango apatite, supporting the correctness of our approach and providing a series of insights into the theory and practice of fission-track thermochronology. Etching rates for annealed induced tracks are much faster than those for unannealed induced and spontaneous tracks, impacting the relative efficiency of both confined track length and density measurements and suggesting that high-temperature laboratory annealing may induce a transformation in track cores that does not occur at geological conditions of partial annealing. The model quantifies how variation in analyst selection criteria, summarized as the ratio of along-track to bulk etching velocity at the etched track tip (vT/vB), likely plays a first-order role in the reproducibility of confined length measurements. It also accounts for and provides an estimate of the large proportion of tracks that are intersected but not measured, and it shows how length biasing is likely to be an insufficient basis for predicting the relative probability of detection of different track populations. The vT(x) model provides an approach to optimizing etching conditions, linking track length measurements across etching protocols, and discerning new information on the underlying structure of fission tracks.


Author(s):  
V. Polnikov ◽  
◽  
F. Pogarsky ◽  
N. Zilitinkevich ◽  
A. Kubryakov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document