scholarly journals Confined fission-track revelation in apatite: how it works and why it matters

Geochronology ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 433-464
Author(s):  
Richard A. Ketcham ◽  
Murat T. Tamer

Abstract. We present a new model for the etching and revelation of confined fission tracks in apatite based on variable along-track etching velocity, vT(x). Insights from step-etching experiments and theoretical energy loss rates of fission fragments suggest two end-member etching structures: constant-core, with a central zone of constant etching rate that then falls off toward track tips; and linear, in which etching rates fall linearly from the midpoint to the tips. From these, we construct a characterization of confined track revelation that encompasses all relevant processes, including penetration and widening of semi-tracks etching in from the polished grain surface, intersection with and expansion of confined tracks, and analyst selection of which tracks to measure and which to bypass. Both etching structures are able to fit step-etching data from five sets of paired experiments of fossil tracks and unannealed and annealed induced tracks in Durango apatite, supporting the correctness of our approach and providing a series of insights into the theory and practice of fission-track thermochronology. Etching rates for annealed induced tracks are much faster than those for unannealed induced and spontaneous tracks, impacting the relative efficiency of both confined track length and density measurements and suggesting that high-temperature laboratory annealing may induce a transformation in track cores that does not occur at geological conditions of partial annealing. The model quantifies how variation in analyst selection criteria, summarized as the ratio of along-track to bulk etching velocity at the etched track tip (vT/vB), likely plays a first-order role in the reproducibility of confined length measurements. It also accounts for and provides an estimate of the large proportion of tracks that are intersected but not measured, and it shows how length biasing is likely to be an insufficient basis for predicting the relative probability of detection of different track populations. The vT(x) model provides an approach to optimizing etching conditions, linking track length measurements across etching protocols, and discerning new information on the underlying structure of fission tracks.

2020 ◽  
Author(s):  
Richard A. Ketcham ◽  
Murat T. Tamer

Abstract. We present a new model for the etching and revelation of confined fission tracks in apatite, based on step etching measurements that demonstrate variable along-track etching velocity, vT(x). We define two end-member model forms: Constant-core, with a central zone of constant etching rate that then falls off toward track tips; and Linear, in which etching rates fall linearly from the midpoint to the tips. Based on these, we construct a characterization of confined track revelation that encompasses all of the relevant processes, including penetration and thickening of semi-tracks from the polished grain surface, intersection of confined tracks, and analyst selection of which tracks to measure and which to bypass. Both model forms are able to fit step-etching data from five sets of paired experiments of fossil tracks and unannealed and annealed induced tracks, supporting the correctness of our approach and providing a series of insights into the theory and practice of fission-track thermochronology. Etching rates for annealed induced tracks are much faster than those for unannealed induced and spontaneous tracks, impacting the relative efficiency of both confined track length and density measurements, and suggesting that high-temperature laboratory annealing may induce a transformation in track cores that does not occur at geological conditions of partial annealing. The model quantifies how variation in analyst selection criteria, summarized as the ratio of along-track to bulk etching velocity at the track tip (vT/vB), likely plays a first-order role in the reproducibility of confined length measurements. It also shows that a large proportion of tracks that are intersected are not measured, indicating that length biasing is an insufficient statistical model for predicting the relative probability of detection of different track populations. The vT(x) model provides an approach to both optimizing etching conditions and linking track length measurements across etching protocols.


2020 ◽  
Author(s):  
Lucie Novakova ◽  
Raymond Jonckheere ◽  
Bastian Wauschkuhn ◽  
Lothar Ratchbacher

<p>The Naab area is situated on the western border of the Bohemian Massif, 60 km south of the KTB (Kontinentalen Tiefbohrung). The main super-deep borehole of the KTB reached a depth of 9,101 meters in the Earth's continental crust. The fission-track data for the KTB and the Naab area present contrasting signatures. The apatite fission-track ages in the upper section of the KTB borehole and surrounding area are in the range 50-70 Ma (Wagner et al., 1994; Wauschkuhn et al., 2015). The apatite fission-track ages of the Naab basement are older than those of the KTB area, and span a broader range: 120-200 Ma (Vercoutere, 1994). The distributions of the confined-track lengths range from unimodal over skewed and mixed to bimodal, with mean lengths in the range 11-13 µm. In broad terms, this can be interpreted as that the Naab samples contain both an older and younger (in particular pre- and post-late Cretaceous) fission-track population. The aim of our research is to investigate the applicability of lab-based models to geological data, using improved measurement techniques.</p><p>We studied eighteen samples dated by Vercoutere (1994) from the Palaeozoic basement and seven large rock samples from the Rotliegend strata north of the Luhe fault.  We intend to extend the confined-track length measurements of Vercoutere (1994), aiming to achieve higher resolution through methodological innovations made possible by computer-controlled motorized microscopes. Improved statistics increase the resolution of the modelled thermal histories, which permits to better distinguish systematic from statistical differences between the modelled palaeotemperatures and geological estimates. Experiments have shown that the rate of length increase permits to distinguish older from younger tracks (Jonckheere et al., 2017). This allows us to distinguish between tracks formed before and after the Late Cre­taceous to Palaeocene exhumation. The etch rate of a confined track is also an indicator of its individual thermal history, supplementing the information gleaned from its etchable length under fixed conditions. We compiled a comprehensive, high-resolution confined-track-length dataset. The Naab thermal histories were determined using modern modelling algorithms, implementing the most recent empirical equations.</p><p><strong>References</strong></p><p>Jonckheere R., Tamer M., Wauschkuhn F., Wauschkuhn B., Ratschbacher L., 2017. Single-track length measurements of step-etched fission tracks in Durango apatite: Vorsprung durch Technik.American Mineralogist 102, 987-996.</p><p>Vercoutere C., 1994. The thermotectonic history of the Brabant Massif (Belgium) and the Naab Basement (Germany):   an apatite fission track analysis. Ph. D. thesis, Universiteit Gent, pp. 191.</p><p>Wagner G.A., Hejl E., Van Den Haute P., 1994. The KTB fission-track project: Methodical aspects and geological implications. Radiation Measurements 23, 95-101.</p><p>Wauschkuhn B., Jonckheere R., Ratschbacher L., 2015. The KTB apatite fission-track profiles: building on a firm foundation? Geochimica et Cosmochimica Acta 167, 27-62.</p>


Calculations in stochastic geometry are applied to the geological problem of analysing the statistical distribution of fission tracks in an apatite crystal, when information is available only by plane sampling. The feature of particular interest is the effect of anisotropy, in the sense of dependence of track length on orientation. Using a realistic Poisson line-segment model, we obtain formulae for the density of line segments intersecting an arbitrary plane and for the length distributions of confined tracks, semi-tracks and projected semi-tracks in terms of the conditional distribution of length given orientation. These formulae are used to explain and quantify the effect of anisotropy seen in experimental data from fission track annealing studies. We argue that track orientations, in addition to lengths, carry potentially useful information. For confined tracks, we recommend that both length and angle to the c -axis be measured as routine practice. For projected semi-tracks, where it is much harder to extract useful information from the observed length distribution, the measurement of angle, in addition to length, may prove fruitful, particularly when confined tracks are scarce.


2013 ◽  
Vol 98 (8-9) ◽  
pp. 1381-1392 ◽  
Author(s):  
C. J. Soares ◽  
S. Guedes ◽  
C. A. Tello ◽  
A. L. Lixandrao Filho ◽  
A. M. Osorio ◽  
...  

2018 ◽  
Vol 72 (6) ◽  
pp. 870-878
Author(s):  
Hang Wu ◽  
Shixiang Wu ◽  
Nansheng Qiu ◽  
Jian Chang ◽  
Rima Bao ◽  
...  

Apatite fission-track (AFT) analysis, a widely used low-temperature thermochronology method, can provide details of the hydrocarbon generation history of source rocks for use in hydrocarbon exploration. The AFT method is based on the annealing behavior of fission tracks generated by 238U fission in apatite particles during geological history. Due to the cumbersome experimental steps and high expense, it is imperative to find an efficient and inexpensive technique to determinate the annealing degree of AFT. In this study, on the basis of the ellipsoid configuration of tracks, the track volume fraction model (TVFM) is established and the fission-track volume index is proposed. Furthermore, terahertz time domain spectroscopy (THz-TDS) is used for the first time to identify the variation of the AFT annealing degree of Durango apatite particles heated at 20, 275, 300, 325, 450, and 500 ℃ for 10 h. The THz absorbance of the sample increases with the degree of annealing. In addition, the THz absorption index is exponentially related to annealing temperature and can be used to characterize the fission-track volume index. Terahertz time domain spectroscopy can be an ancillary technique for AFT thermochronological research. More work is urgently needed to extrapolate experimental data to geological conditions.


2019 ◽  
Vol 104 (10) ◽  
pp. 1421-1435 ◽  
Author(s):  
Murat T. Tamer ◽  
Ling Chung ◽  
Richard A. Ketcham ◽  
Andrew J.W. Gleadow

Abstract Previous inter-laboratory experiments on confined fission-track length measurements in apatite have consistently reported variation substantially in excess of statistical expectation. There are two primary causes for this variation: (1) differences in laboratory procedures and instrumentation, and (2) personal differences in perception and assessment between analysts. In this study, we narrow these elements down to two categories, etching procedure and analyst bias. We assembled a set of eight samples with induced tracks from four apatite varieties, initially irradiated between 2 and 43 years prior to etching. Two mounts were made containing aliquots of each sample to ensure identical etching conditions for all apatites on a mount. We employed two widely used etching protocols, 5.0 M HNO3 at 20 °C for 20 s and 5.5 M HNO3 at 21 °C for 20 s. Sets of track images were then captured by an automated system and exchanged between two analysts, so that measurements could be carried out on the same tracks and etch figures, in the same image data, allowing us to isolate and examine the effects of analyst bias. An additional 5 s of etching was then used to evaluate etching behavior at track tips. In total, 8391 confined fission-track length measurements were performed; along with 1480 etch figure length measurements. When the analysts evaluated each other's track selections within the same images for suitability for measurement, the average rejection rate was ~14%. For tracks judged as suitable by both analysts, measurements of 2D and 3D length, dip, and c-axis angle were in excellent agreement, with slightly less dispersion when using the 5.5 M etch. Lengths were shorter in the 5.0 M etched mount than the 5.5 M etched one, which we interpret to be caused by more prevalent under-etching in the former, at least for some apatite compositions. After an additional 5 s of etching, 5.0 M tracks saw greater lengthening and more reduction in dispersion than 5.5 M tracks, additional evidence that they were more likely to be under-etched after the initial etching step. Systematic differences between analysts were minimal, with the main exception being likelihood of observing tracks near perpendicular to the crystallographic c axis, which may reflect different use of transmitted vs. reflected light when scanning for tracks. Etch figure measurements were more consistent between analysts for the 5.5 M etch, though one apatite variety showed high dispersion for both. Within a given etching protocol, each sample reflected a decrease of mean track length with time since irradiation, giving evidence of 0.2–0.3 μm of annealing over year to decade timescales.


Sign in / Sign up

Export Citation Format

Share Document