Effect of weight-bearing in bicruciate-retaining total knee arthroplasty during high-flexion activities

2022 ◽  
pp. 105569
Author(s):  
Kenichi Kono ◽  
Hiroshi Inui ◽  
Tetsuya Tomita ◽  
Takaharu Yamazaki ◽  
Shuji Taketomi ◽  
...  
The Knee ◽  
2021 ◽  
Vol 29 ◽  
pp. 183-189
Author(s):  
Tomofumi Kage ◽  
Hiroshi Inui ◽  
Tetsuya Tomita ◽  
Takaharu Yamazaki ◽  
Shuji Taketomi ◽  
...  

2019 ◽  
Vol 27 (7) ◽  
pp. 2096-2103 ◽  
Author(s):  
Kenichi Kono ◽  
Hiroshi Inui ◽  
Tetsuya Tomita ◽  
Takaharu Yamazaki ◽  
Shuji Taketomi ◽  
...  

The Knee ◽  
2018 ◽  
Vol 25 (6) ◽  
pp. 1262-1271 ◽  
Author(s):  
Monther A. Gharaibeh ◽  
Elizabeth Monk ◽  
Darren B. Chen ◽  
Samuel J. MacDessi

Author(s):  
Kartik M. Varadarajan ◽  
Angela Moynihan ◽  
Darryl D’Lima ◽  
Clifford W. Colwell ◽  
Harry E. Rubash ◽  
...  

Accurate knowledge of in vivo articular contact kinematics and contact forces is required to quantitatively understand factors limiting life of total knee arthroplasty (TKA) implants, such as polyethylene component wear and implant loosening [1]. Determination of in vivo tibiofemoral contact forces has been a challenging issue in biomechanics. Historically, instrumented tibial implants have been used to measure tibiofemoral forces in vitro [2] and computational models involving inverse dynamic optimization have been used to estimate joint forces in vivo [3]. Recently, D’Lima et al. reported the first in vivo measurement of 6DOF tibiofemoral forces via an instrumented implant in a TKA patient [4]. However this technique does not provide a direct estimation of tibiofemoral contact forces in the medial and lateral compartments. Recently, a dual fluoroscopic imaging system has been used to accurately determine tibiofemoral contact locations on the medial and lateral tibial polyethylene surfaces [5]. The objective of this study was to combine the dual fluoroscope technique and the instrumented TKAs to determine the dynamic 3D articular contact kinematics and contact forces on the medial and lateral tibial polyethylene surfaces during functional activities.


2010 ◽  
Vol 25 (6) ◽  
pp. 964-969 ◽  
Author(s):  
Atsushi Kitagawa ◽  
Nobuhiro Tsumura ◽  
Takaaki Chin ◽  
Kazuyoshi Gamada ◽  
Scott A. Banks ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Philippe Moewis ◽  
Hagen Hommel ◽  
Adam Trepczynski ◽  
Leonie Krahl ◽  
Philipp von Roth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document