Metal artifacts from sternal wires: evaluation of virtual monoenergetic images from spectral-detector CT for artifact reduction

2020 ◽  
Vol 60 (2) ◽  
pp. 249-256
Author(s):  
Kai Roman Laukamp ◽  
Nils Große Hokamp ◽  
Omar Alabar ◽  
Verena Carola Obmann ◽  
Simon Lennartz ◽  
...  
Author(s):  
Lenhard Pennig ◽  
David Zopfs ◽  
Roman Gertz ◽  
Johannes Bremm ◽  
Charlotte Zaeske ◽  
...  

Abstract Objectives To evaluate the reduction of artifacts from cardiac implantable electronic devices (CIEDs) by virtual monoenergetic images (VMI), metal artifact reduction (MAR) algorithms, and their combination (VMIMAR) derived from spectral detector CT (SDCT) of the chest compared to conventional CT images (CI). Methods In this retrospective study, we included 34 patients (mean age 74.6 ± 8.6 years), who underwent a SDCT of the chest and had a CIED in place. CI, MAR, VMI, and VMIMAR (10 keV increment, range: 100–200 keV) were reconstructed. Mean and standard deviation of attenuation (HU) among hypo- and hyperdense artifacts adjacent to CIED generator and leads were determined using ROIs. Two radiologists qualitatively evaluated artifact reduction and diagnostic assessment of adjacent tissue. Results Compared to CI, MAR and VMIMAR ≥ 100 keV significantly increased attenuation in hypodense and significantly decreased attenuation in hyperdense artifacts at CIED generator and leads (p < 0.05). VMI ≥ 100 keV alone only significantly decreased hyperdense artifacts at the generator (p < 0.05). Qualitatively, VMI ≥ 100 keV, MAR, and VMIMAR ≥ 100 keV provided significant reduction of hyper- and hypodense artifacts resulting from the generator and improved diagnostic assessment of surrounding structures (p < 0.05). Diagnostic assessment of structures adjoining to the leads was only improved by MAR and VMIMAR 100 keV (p < 0.05), whereas keV values ≥ 140 with and without MAR significantly worsened diagnostic assessment (p < 0.05). Conclusions The combination of VMI and MAR as well as MAR as a standalone approach provides effective reduction of artifacts from CIEDs. Still, higher keV values should be applied with caution due to a loss of soft tissue and vessel contrast along the leads. Key Points • The combination of VMI and MAR as well as MAR as a standalone approach enables effective reduction of artifacts from CIEDs. • Higher keV values of both VMI and VMIMARat CIED leads should be applied with caution since diagnostic assessment can be hampered by a loss of soft tissue and vessel contrast. • Recommended keV values for CIED generators are between 140 and 200 keV and for leads around 100 keV.


2018 ◽  
Vol 49 ◽  
pp. 5-10 ◽  
Author(s):  
Daisuke Sakabe ◽  
Yoshinori Funama ◽  
Katsuyuki Taguchi ◽  
Takeshi Nakaura ◽  
Daisuke Utsunomiya ◽  
...  

2019 ◽  
Vol 61 (4) ◽  
pp. 450-460 ◽  
Author(s):  
Kai Roman Laukamp ◽  
Amit Gupta ◽  
Nils Große Hokamp ◽  
Verena Carola Obmann ◽  
Frank Philipp Graner ◽  
...  

Background In CT imaging, a high concentration of iodinated contrast media in axillary and subclavian veins after brachial application can cause perivenous artifacts impairing diagnostic assessment of local vascular structures and soft tissue. Purpose To investigate reduction of perivenous hypo- and hyperattenuating artifacts of the axillary and subclavian veins using virtual monoenergetic images (VMI) in comparison to conventional CT images (CI), acquired on spectral-detector CT. Material and Methods 50 spectral-detector CT datasets of patients with perivenous artifacts from contrast media were included in this retrospective, institutional review board-approved study. CT images and virtual monoenergetic images (range 40–200 keV, 10-keV increments) were reconstructed from the same scans. Quantitative analysis was performed by region of interest-based assessment of mean attenuation (HU) and standard deviation in most pronounced hypo- and hyperdense artifacts and artifact-impaired arteries as well as muscle. Visually, artifact reduction, assessment of vessels, and surrounding soft tissue were rated on 5-point Likert-scales by two radiologists. Results In comparison to CT images, virtual monoenergetic images of ≥90 keV showed a significant reduction of hypo- and hyperattenuating artifacts (hypodense: CI -220.0±171.2 HU; VMI130keV -13.4±49.1 HU; hyperdense: CI 274.6±184.4 HU; VMI130keV 24.2±84.9 HU; P<0.001). Subjective analysis confirmed that virtual-monoenergetic images of ≥100 keV significantly reduced artifacts (hypodense: CI 2[1–3]; VMI130keV 5[4–5], hyperdense: CI 2[1–4]; VMI130keV 5[5–5], P<0.001) and improved diagnostic assessment. Best results for diagnostic assessment were noted for virtual monoenergetic images at 130 keV. Overcorrection of artifacts was observed at higher keV values. Interrater agreement was excellent for each evaluation and keV value (intraclass correlation coefficient 0.89). Conclusion Higher keV virtual monoenergetic images yielded significant reduction of contrast media artifacts and led to improved assessment of vessels and surrounding soft tissue. Recommended keV values for best diagnostic assessment are in the range of 100–160 keV.


2017 ◽  
Vol 93 ◽  
pp. 143-148 ◽  
Author(s):  
Victor Neuhaus ◽  
Nils Große Hokamp ◽  
Nuran Abdullayev ◽  
Robert Rau ◽  
Anastasios Mpotsaris ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guorong Wang ◽  
Qinzong Gao ◽  
Zhiwei Wang ◽  
Xiaomei Lu ◽  
Shenghui Yu ◽  
...  

AbstractThe purpose of the study was to investigate the application of virtual monoenergetic images (VMIs) in reducing metal artifacts in rabbit VX2 liver cancer models treated with microwave ablation (MWA) therapy. A total of 31 VX2 liver cancer models that accepted CT-guided percutaneous microwave ablation were analyzed. Conventional images (CIs) with the most severe metallic artifacts and their corresponding energy levels from 40 to 200 keV with 10 keV increment of VMIs were reconstructed for further analysis. Objective image analysis was assessed by recording the attenuation (HU) and standard deviation of the most severe hyper/hypodense artifacts as well as artifact-impaired liver parenchyma tissue. Two radiologists visually evaluated the extent of artifact reduction, assessed data obtained by a diagnostic evaluation of liver tissues, and appraised the appearance of new artifacts according to the grade score. Statistical analysis was performed to compare the difference between CIs and each energy level of VMIs. For subjective assessment, reductions in hyperdense and hypodense artifacts were observed at 170–200 keV and 160–200 keV, respectively. The outcomes of the diagnostic evaluation of adjacent liver tissue were statistically higher at 140–200 keV for VMIs than for CIs. In terms of objective evaluation results, VMIs at 90–200 keV reduced the corrected attenuation of hyperdense and of artifact-impaired liver parenchyma compared with CIs (P < 0.001). When VMIs at 80–200 keV decreased the hypodense artifacts (P < 0.001). Therefore, we concluded that VMIs at 170–200 keV can obviously decrease the microwave ablation needle-related metal artifacts objectively and subjectively in rabbit VX2 liver cancer models.


Sign in / Sign up

Export Citation Format

Share Document