Cerebral perfusion pressure and intracranial pressure are not surrogates for brain tissue oxygenation in traumatic brain injury

2012 ◽  
Vol 123 (6) ◽  
pp. 1255-1260 ◽  
Author(s):  
Evert A. Eriksson ◽  
Jeffrey F. Barletta ◽  
Bryan E. Figueroa ◽  
Bruce W. Bonnell ◽  
Wayne E. Vanderkolk ◽  
...  
Neurosurgery ◽  
2008 ◽  
Vol 63 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Anthony A. Figaji ◽  
A. Graham Fieggen ◽  
Andrew C. Argent ◽  
Peter D. LeRoux ◽  
Jonathan C. Peter

ABSTRACT OBJECTIVE Most physicians rely on conventional treatment targets for intracranial pressure, cerebral perfusion pressure, systemic oxygenation, and hemoglobin to direct management of traumatic brain injury (TBI) in children. In this study, we used brain tissue oxygen tension (PbtO2) monitoring to examine the association between PbtO2 values and outcome in pediatric severe TBI and to determine the incidence of compromised PbtO2 in patients for whom acceptable treatment targets had been achieved. METHODS In this prospective observational study, 26 children with severe TBI and a median postresuscitation Glasgow Coma Scale score of 5 were managed with continuous PbtO2 monitoring. The relationships between outcome and the 6-hour period of lowest PbtO2 values and the length of time that PbtO2 was less than 20, 15, 10, and 5 mmHg were examined. The incidence of reduced PbtO2 for each threshold was evaluated where the following targets were met: intracranial pressure less than 20 mmHg, cerebral perfusion pressure greater than 50 mmHg, arterial oxygen tension greater than 60 mmHg (and peripheral oxygen saturation > 90%), and hemoglobin greater than 8 g/dl. RESULTS There was a significant association between poor outcome and the 6-hour period of lowest PbtO2 and length of time that PbtO2 was less than 15 and 10 mmHg. Multiple logistic regression analysis showed that low PbtO2 had an independent association with poor outcome. Despite achieving the management targets described above, 80% of patients experienced one or more episodes of compromised PbtO2 (< 20 mmHg), and almost one-third experienced episodes of brain hypoxia (PbtO2 < 10 mmHg). CONCLUSION Reduced PbtO2 is associated with poor outcome in pediatric severe TBI. In addition, many patients experience episodes of compromised PbtO2 despite achieving acceptable treatment targets.


2020 ◽  
Author(s):  
Tatiana Birg ◽  
Fabrizio Ortolano ◽  
Eveline J.A. Wiegers ◽  
Peter Smielewski ◽  
Yan Savchenko ◽  
...  

Abstract BackgroundAfter Traumatic Brain Injury (TBI) fever is frequent. Brain temperature, which is directly linked to body temperature, may influence brain physiology. Increased body and/or brain temperature may cause secondary brain damage, with deleterious effects on intracranial pressure (ICP), cerebral perfusion pressure (CPP) and outcome. MethodsCENTER-TBI, a prospective, multicenter, longitudinal study on TBI in Europe and Israel, includes a high resolution (HR) cohort of patients with data sampled at high-frequency (from 100 Hz to 500 Hz). In this study, simultaneous BT, ICP and CPP recordings were investigated. A mixed effects linear model was used to examine the association between different BT levels and ICP. We additionally focused on changes of ICP and CPP during the episodes of BT changes (delta BT ≥0.5 °C, lasting from 15 minutes to 3 hours) up or down-wards. The significance of ICP and CPP variations was estimated with the paired samples Wilcoxon test. Results Twenty-one patients with 2435 hours of simultaneous BT and ICP monitoring were studied. All patients reached a BT of 38° and experienced at least one episode of ICP above 20 mmHg. The linear mixed effects model revealed an association between BT above 37.5°C and higher ICP levels that was not confirmed for lower BT. We identified 149 episodes of BT changes. During BT elevations (n=79) ICP increased while CPP was reduced; opposite ICP and CPP variations occurred during episodes of BT reduction (n=70). All these changes were of moderate clinical relevance, even if statistically significant (p<0.0001). It has to be noted, however, that a number of therapeutic interventions against intracranial hypertension was documented during those episodes.ConclusionPatients after TBI usually develop BT> 38° soon after the injury. Brain temperature may influence brain physiology, as reflected by ICP and CPP. An association between BT exceeding 37.5°C and a higher ICP was identified. The relationship between BT, ICP and CPP become clearer during rapid temperature changes.Trial registration: The core study was registered with ClinicalTrials.gov, number NCT02210221, registered on July 29, 2014


Sign in / Sign up

Export Citation Format

Share Document