A reduced-order characteristic finite element method based on POD for optimal control problem governed by convection–diffusion equation

2022 ◽  
Vol 391 ◽  
pp. 114538
Author(s):  
Junpeng Song ◽  
Hongxing Rui
Author(s):  
Sundar Namala ◽  
Rizwan Uddin

Abstract Nodal integral methods (NIM) are a class of efficient coarse mesh methods that use transverse averaging to reduce the governing partial differential equation(s) (PDE) into a set of ordinary differential equations (ODE). The standard application of NIM is restricted to domains that have boundaries parallel to one of the coordinate axes/palnes (in 2D/3D). The hybrid nodal-integral/finite-element method (NI-FEM) reported here has been developed to extend the application of NIM to arbitrary domains. NI-FEM is based on the idea that the interior region and the regions with boundaries parallel to the coordinate axes (2D) or coordinate planes (3D) can be solved using NIM, and the rest of the domain can be discretized and solved using FEM. The crux of the hybrid NI-FEM is in developing interfacial conditions at the common interfaces between the NIM regions and FEM regions. We here report the development of hybrid NI-FEM for the time-dependent convection-diffusion equation (CDE) in arbitrary domains. Resulting hybrid numerical scheme is implemented in a parallel framework in Fortran and solved using PETSc. The preliminary approach to domain decomposition is also discussed. Numerical solutions are compared with exact solutions, and the scheme is shown to be second order accurate in both space and time. The order of approximations used for the development of the scheme are also shown to be second order. The hybrid method is more efficient compared to standalone conventional numerical schemes like FEM.


Author(s):  
Brian H. Dennis

A Least Squares Finite Element Method (LSFEM) formulation for the detection of unknown boundary conditions in problems governed by the steady convection-diffusion equation will be presented. The method is capable of determining temperatures, and heat fluxes in location where such quantities are unknown provided such quantities are sufficiently over-specified in other locations. For the current formulation it is assumed the velocity field is known. The current formulation is unique in that it results in a sparse square system of equations even for partial differential equations that are not self-adjoint. Since this formulation always results in a symmetric positive-definite matrix, the solution can be found with standard sparse matrix solvers such as preconditioned conjugate gradient method. In addition, the formulation allows for equal order approximation of temperature and heat fluxes as it is not subject to the inf-sup condition. The formulation allow for a treatment of over-specified boundary conditions. Also, various forms of regularization can be naturally introduced within the formulation. Details of the discretization and sample results will be presented.


Author(s):  
К.С. Бормотин ◽  
А. Вин

Рассматривается моделирование технологий обтяжки на прессе для изготовления обшивок двойной кривизны. Автоматизированное формообразование деталей требует разработки управляющей программы и электронной модели пуансона. Качество полученной детали будет зависеть от точности вычисленной и изготовленной формы оснастки, задающей упреждающую форму панели, и траектории деформирования листовой заготовки. При условии заданной оснастки ставится задача оптимального управления для поиска наилучшей траектории движения зажимов в оборудовании. Вводятся критерии оптимизации процессов деформирования, которые обеспечивают минимальную поврежденность и максимальные остаточные деформации. Вычисление критериев выполняется с помощью моделирования и анализа нелинейного деформирования панели с контактными ограничениями методом конечных элементов. Формулируется дискретная задача оптимального управления, которая решается методом динамического программирования. Алгоритмы численного метода, реализованные в пакете программ MSC.Marc, позволяют вычислить оптимальные параметры работы обтяжного пресса. Программная реализация алгоритма выполнена в последовательном и параллельном режимах. На основе вычислительных экспериментов показана эффективность параллельного расчета на кластере вычислительных машин. We analyze the stretchforming technology using a press to manufacture the doublecurvature shells. The automated shaping of parts requires the development of a control program and an electronic model of a punch. The quality of the part obtained depends on the accuracy of the calculated and manufactured tools that specify the anticipated shape of the panel and on the deformation path of the sheet. Under the condition of a given tooling, an optimal control problem is formulated to find the best trajectory of movement of the clamps in the equipment. Some criteria for deformation optimization processes are introduced to ensure a minimum damage and maximum residual deformations. The calculation of the criteria is performed with the aid of modeling and analyzing the panel nonlinear deformation with contact constraints by the finite element method. The problems of inelastic deformation are solved by the finite element method. A discrete optimal control problem is formulated and solved by the methods of dynamic programming. The algorithms are implemented using the MSC.Marc package and allow us to calculate the optimal parameters of the stretchforming press in serial and parallel modes. The obtained numerical results show the efficiency of parallel implementations on a cluster of computers.


Sign in / Sign up

Export Citation Format

Share Document