Stochastic resonance in a piecewise nonlinear model driven by multiplicative non-Gaussian noise and additive white noise

Author(s):  
Yongfeng Guo ◽  
Yajun Shen ◽  
Jianguo Tan
2005 ◽  
Vol 15 (09) ◽  
pp. 2985-2994 ◽  
Author(s):  
FRANÇOIS CHAPEAU-BLONDEAU ◽  
DAVID ROUSSEAU

The optimal detection of a signal of known form hidden in additive white noise is examined in the framework of stochastic resonance and noise-aided information processing. Conditions are exhibited where the performance in the optimal detection increases when the level of the additive (non-Gaussian bimodal) noise is raised. On the additive signal–noise mixture, when a threshold quantization is performed prior to the optimal detection, another form of improvement by noise can be obtained, with subthreshold signals and Gaussian noise. Optimization of the quantization threshold shows that even in symmetric detection settings, the optimal threshold can be away from the center of symmetry and in subthreshold configuration of the signals. These properties concerning non-Gaussian noise and nonlinear preprocessing in optimal detection, are meaningful to the current exploration of the various modalities and potentialities of stochastic resonance.


2011 ◽  
Vol 279 ◽  
pp. 361-366
Author(s):  
Quan Yuan ◽  
Yan Shen ◽  
Liang Chen

Stochastic resonance (SR) is a nonlinear phenomenon which can be used to detect weak signal. The theory of SR in a biased mono-stable system driven by multiplicative and additive white noise as well as a weak periodic signal is investigated. The virtual instrument (VI) for weak signal detecting based on this theory is designed with LabVIEW. This instrument can be used to detect weak periodic signals which meets the conditions given and can greatly improved the power spectrum of the weak signal. The results that related to different sets of parameters are given and the features of these results are in accordance with the theory of mono-stable SR. Thus, the application of this theory in the detecting of weak signal is proven to be valid.


2017 ◽  
Vol 31 (14) ◽  
pp. 1750113 ◽  
Author(s):  
Pei-Ming Shi ◽  
Qun Li ◽  
Dong-Ying Han

This paper investigates a new asymmetric bistable model driven by correlated multiplicative colored noise and additive white noise. The mean first-passage time (MFPT) and the signal-to-noise ratio (SNR) as the indexes of evaluating the model are researched. Based on the two-state theory and the adiabatic approximation theory, the expressions of MFPT and SNR have been obtained for the asymmetric bistable system driven by a periodic signal, correlated multiplicative colored noise and additive noise. Simulation results show that it is easier to generate stochastic resonance (SR) to adjust the intensity of correlation strength [Formula: see text]. Meanwhile, the decrease of asymmetric coefficient [Formula: see text] and the increase of noise intensity are beneficial to realize the transition between the two steady states in the system. At the same time, the twice SR phenomena can be observed by adjusting additive white noise and correlation strength. The influence of asymmetry of potential function on the MFPTs in two different directions is different.


2012 ◽  
Vol 61 (13) ◽  
pp. 130502
Author(s):  
Zhang Jing-Jing ◽  
Jin Yan-Fei

Sign in / Sign up

Export Citation Format

Share Document