Stochastic resonance in a stochastic bistable system subject to additive white noise and dichotomous noise

2009 ◽  
Vol 388 (17) ◽  
pp. 3371-3376 ◽  
Author(s):  
Feng Guo ◽  
Yu-rong Zhou
2017 ◽  
Vol 31 (14) ◽  
pp. 1750113 ◽  
Author(s):  
Pei-Ming Shi ◽  
Qun Li ◽  
Dong-Ying Han

This paper investigates a new asymmetric bistable model driven by correlated multiplicative colored noise and additive white noise. The mean first-passage time (MFPT) and the signal-to-noise ratio (SNR) as the indexes of evaluating the model are researched. Based on the two-state theory and the adiabatic approximation theory, the expressions of MFPT and SNR have been obtained for the asymmetric bistable system driven by a periodic signal, correlated multiplicative colored noise and additive noise. Simulation results show that it is easier to generate stochastic resonance (SR) to adjust the intensity of correlation strength [Formula: see text]. Meanwhile, the decrease of asymmetric coefficient [Formula: see text] and the increase of noise intensity are beneficial to realize the transition between the two steady states in the system. At the same time, the twice SR phenomena can be observed by adjusting additive white noise and correlation strength. The influence of asymmetry of potential function on the MFPTs in two different directions is different.


2011 ◽  
Vol 295-297 ◽  
pp. 2143-2146 ◽  
Author(s):  
Feng Guo ◽  
Xiao Feng Cheng ◽  
Xiao Dong Yuan ◽  
Shao Bo He

The stochastic resonance in a bistable system subject to asymmetric dichotomous noise and multiplicative and additive white noise is investigated. By using the properties of the dichotomous noise, under the adiabatic approximation condition, the expression of the signal-to-noise ratio (SNR) is obtained. It is found that the SNR is a non-monotonic function of the asymmetry of the dichotomous noise, and it varies non-monotonously with the intensities of the multiplicative and additive noise as well as with the system parameters. Moreover, the SNR depends on the correlation rate of the dichotomous noise.


2011 ◽  
Vol 25 (28) ◽  
pp. 3797-3804 ◽  
Author(s):  
GUO FENG ◽  
YU-RONG ZHOU ◽  
SHAO-FU LI

The stochastic resonance (SR) for a stochastic bistable system driven by a static force and a periodic square-wave signal as well as by additive white noise is considered from the view of signal-to-noise ratio (SNR). It is found that the SNR appears SR behavior when it is plotted as a function of the additive noise strength or as a function of the system parameters. Moreover, the influence of the static force is opposite to that of the amplitude of the stochastic potential.


2011 ◽  
Vol 279 ◽  
pp. 361-366
Author(s):  
Quan Yuan ◽  
Yan Shen ◽  
Liang Chen

Stochastic resonance (SR) is a nonlinear phenomenon which can be used to detect weak signal. The theory of SR in a biased mono-stable system driven by multiplicative and additive white noise as well as a weak periodic signal is investigated. The virtual instrument (VI) for weak signal detecting based on this theory is designed with LabVIEW. This instrument can be used to detect weak periodic signals which meets the conditions given and can greatly improved the power spectrum of the weak signal. The results that related to different sets of parameters are given and the features of these results are in accordance with the theory of mono-stable SR. Thus, the application of this theory in the detecting of weak signal is proven to be valid.


Sign in / Sign up

Export Citation Format

Share Document