Effects of dilution with carbon dioxide on the laminar burning velocity and flame stability of H2–CO mixtures at atmospheric condition

2012 ◽  
Vol 159 (2) ◽  
pp. 482-492 ◽  
Author(s):  
C. Prathap ◽  
Anjan Ray ◽  
M.R. Ravi
Author(s):  
Takumi Ebara ◽  
Norihiko Iki ◽  
Sanyo Takahashi ◽  
Won-Hee Park

Replacing the Nitrogen with another kind of inert gas such as steam and Carbon dioxide is effective for both reducing NOx and enhancing system efficiency in gas turbine combustor. But the flame properties of such radiative mixture are complicated because of the third body effect and radiation reabsorption. So, we made detailed chemical kinetic calculations including the effect of radiation reabsorption to clarify the premixed laminar flame speed of such mixture as one of the most important properties for controlling the combustion. The concentrations of mixture are varied, and addition of other species such as Carbon monoxide and Hydrogen are also calculated to simulate the utilization of reforming gas and partially oxidized gas. And the pressure was varied up to 5.0 MPa to simulate the 1700 °C class combined gas turbine system. The results show remarkable incensement of laminar burning velocity by considering the radiation reabsorption. Laminar burning velocities were accelerated up to 150% in cases of Methane–Oxygen and steam or Carbon dioxide mixture. It was found that preheating of upstream-unburned mixture caused this acceleration. And the influence of radiation reabsorption was much larger in case of lower pressure.


Sign in / Sign up

Export Citation Format

Share Document