A phase field model coupled with pressure-effect-embedded thermodynamic modeling for describing microstructure and microsegregation in pressurized solidification of a ternary magnesium alloy

2017 ◽  
Vol 136 ◽  
pp. 264-270 ◽  
Author(s):  
Shan Shang ◽  
Zhiqiang Han ◽  
Weihua Sun ◽  
Alan A. Luo
2021 ◽  
Vol 1035 ◽  
pp. 827-832
Author(s):  
Jin Lin Xiong ◽  
Yan Wu ◽  
Qiang Luo ◽  
Ji Bing Chen ◽  
Wei Dong Cheng

The effect of restored energy items in recrystallization simulation of AZ31 Mg alloy was studied with multi-order phase field model, and the impact factors during the recrystallization were discussed by changing the parameters of the restored energy item. The simulation results showed that the greater the restored energy, the greater the number of the recrystallized grains.


2015 ◽  
Vol 1088 ◽  
pp. 238-241
Author(s):  
Xun Feng Yuan ◽  
Yan Yang

Numerical simulations based on a new regularized phase field model were presented, simulating the solidification of magnesium alloy. The effects of weak and strong interfacial energy anisotropy on the dendrite growth are studied. The results indicate that with weak interfacial energy anisotropy, the entire dendrite displays six-fold symmetry and no secondary branch appeared. Under strong interfacial energy anisotropy conditions, corners form on both the main stem and the tips of the side branches of the dendrites, the entire facet dendrite displays six-fold symmetry. As the solidification time increases, the tip temperature and velocity of the dendrite and facet dendrite finally tend to stable values. The stable velocity of the facet dendrite is 0.4 at ε6 is 0.05 and this velocity is twice that observed (0.2) at ε6 is 0.005.


2016 ◽  
Author(s):  
Larry Kenneth Aagesen ◽  
Daniel Schwen

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Min Yang ◽  
Lu Wang ◽  
Wentao Yan

AbstractA three-dimensional phase-field model is developed to simulate grain evolutions during powder-bed-fusion (PBF) additive manufacturing, while the physically-informed temperature profile is implemented from a thermal-fluid flow model. The phase-field model incorporates a nucleation model based on classical nucleation theory, as well as the initial grain structures of powder particles and substrate. The grain evolutions during the three-layer three-track PBF process are comprehensively reproduced, including grain nucleation and growth in molten pools, epitaxial growth from powder particles, substrate and previous tracks, grain re-melting and re-growth in overlapping zones, and grain coarsening in heat-affected zones. A validation experiment has been carried out, showing that the simulation results are consistent with the experimental results in the molten pool and grain morphologies. Furthermore, the grain refinement by adding nanoparticles is preliminarily reproduced and compared against the experimental result in literature.


2021 ◽  
Vol 396 ◽  
pp. 125933
Author(s):  
Manuela Bastidas Olivares ◽  
Carina Bringedal ◽  
Iuliu Sorin Pop

Sign in / Sign up

Export Citation Format

Share Document