scholarly journals Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Min Yang ◽  
Lu Wang ◽  
Wentao Yan

AbstractA three-dimensional phase-field model is developed to simulate grain evolutions during powder-bed-fusion (PBF) additive manufacturing, while the physically-informed temperature profile is implemented from a thermal-fluid flow model. The phase-field model incorporates a nucleation model based on classical nucleation theory, as well as the initial grain structures of powder particles and substrate. The grain evolutions during the three-layer three-track PBF process are comprehensively reproduced, including grain nucleation and growth in molten pools, epitaxial growth from powder particles, substrate and previous tracks, grain re-melting and re-growth in overlapping zones, and grain coarsening in heat-affected zones. A validation experiment has been carried out, showing that the simulation results are consistent with the experimental results in the molten pool and grain morphologies. Furthermore, the grain refinement by adding nanoparticles is preliminarily reproduced and compared against the experimental result in literature.

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2762-2767
Author(s):  
J. J. LI ◽  
J. C. WANG ◽  
L. Y. WU ◽  
G. C. YANG

The non-isothermal polycrystalline solidification of a binary alloy is simulated by employing a phase field model which takes into account the heat transition and the random crystallographic orientation. The stochastic nucleation is taken into account in the simulation through the Poisson seeding algorithm and a kinetic calculation for binary melts based on the classical nucleation theory. Different microstructures are obtained under various cooling conditions. It is found that the grain structure becomes finer with increasing the cooling rate, which agrees with experimental result.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1051
Author(s):  
Mohammad Amin Jabbareh ◽  
Hamid Assadi

There is a growing interest in laser melting processes, e.g., for metal additive manufacturing. Modelling and numerical simulation can help to understand and control microstructure evolution in these processes. However, standard methods of microstructure simulation are generally not suited to model the kinetic effects associated with rapid solidification in laser processing, especially for material systems that contain intermetallic phases. In this paper, we present and employ a tailored phase-field model to demonstrate unique features of microstructure evolution in such systems. Initially, the problem of anomalous partitioning during rapid solidification of intermetallics is revisited using the tailored phase-field model, and the model predictions are assessed against the existing experimental data for the B2 phase in the Ni-Al binary system. The model is subsequently combined with a Potts model of grain growth to simulate laser processing of polycrystalline alloys containing intermetallic phases. Examples of simulations are presented for laser processing of a nickel-rich Ni-Al alloy, to demonstrate the application of the method in studying the effect of processing conditions on various microstructural features, such as distribution of intermetallic phases in the melt pool and the heat-affected zone. The computational framework used in this study is envisaged to provide additional insight into the evolution of microstructure in laser processing of industrially relevant materials, e.g., in laser welding or additive manufacturing of Ni-based superalloys.


2010 ◽  
Vol 97-101 ◽  
pp. 3769-3772 ◽  
Author(s):  
Chang Sheng Zhu ◽  
Jun Wei Wang

Based on a thin interface limit 3D phase-field model by coupled the anisotropy of interfacial energy and self-designed AADCR to improve on the computational methods for solving phase-field, 3D dendritic growth in pure undercooled melt is implemented successfully. The simulation authentically recreated the 3D dendritic morphological fromation, and receives the dendritic growth rule being consistent with crystallization mechanism. An example indicates that AADCR can decreased 70% computational time compared with not using algorithms for a 3D domain of size 300×300×300 grids, at the same time, the accelerated algorithms’ computed precision is higher and the redundancy is small, therefore, the accelerated method is really an effective method.


2007 ◽  
Vol 558-559 ◽  
pp. 1177-1181 ◽  
Author(s):  
Philippe Schaffnit ◽  
Markus Apel ◽  
Ingo Steinbach

The kinetics and topology of ideal grain growth were simulated using the phase-field model. Large scale phase-field simulations were carried out where ten thousands grains evolved into a few hundreds without allowing coalescence of grains. The implementation was first validated in two-dimensions by checking the conformance with square-root evolution of the average grain size and the von Neumann-Mullins law. Afterwards three-dimensional simulations were performed which also showed fair agreement with the law describing the evolution of the mean grain size against time and with the results of S. Hilgenfeld et al. in 'An Accurate von Neumann's Law for Three-Dimensional Foams', Phys. Rev. Letters, 86(12)/2685, March 2001. Finally the steady state grain size distribution was investigated and compared to the Hillert theory.


2015 ◽  
Vol 12 (11) ◽  
pp. 4289-4296 ◽  
Author(s):  
Li Feng ◽  
Jinfang Jia ◽  
Changsheng Zhu ◽  
Yang Lu ◽  
Rongzhen Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document