Effect of Restored Energy Items in Recrystallization Simulation of AZ31 Magnesium Alloy

2021 ◽  
Vol 1035 ◽  
pp. 827-832
Author(s):  
Jin Lin Xiong ◽  
Yan Wu ◽  
Qiang Luo ◽  
Ji Bing Chen ◽  
Wei Dong Cheng

The effect of restored energy items in recrystallization simulation of AZ31 Mg alloy was studied with multi-order phase field model, and the impact factors during the recrystallization were discussed by changing the parameters of the restored energy item. The simulation results showed that the greater the restored energy, the greater the number of the recrystallized grains.

2011 ◽  
Vol 399-401 ◽  
pp. 1768-1772 ◽  
Author(s):  
Chang Bo Ke ◽  
Shan Shan Cao ◽  
Xiao Ma ◽  
Xin Ping Zhang

A three-dimensional phase field model applicable for the B2-B19′ martensitic phase transformation of NiTi alloys was developed to predict the twinning modes in the B2-B19′ transition. The phase field simulation results showed that by taking into account the transformation induced elastic strain, the martensite variants were self-accommodated and sheared along the specific interface in the entire transition stage for reducing the elastic energy, whether the formed interface between the variants belongs to twinning plane could be determined by calculating the minimum value of long range elastic interaction energy, Bpq. Through comparison with the existing analytical solutions, it is demonstrated that the phase field model can be used to predict the type I twinning modes in the B2-B19′ phase transition with good precision.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2141
Author(s):  
Taegeon Kim ◽  
Changhwan Shin

Ferroelectric materials have received significant attention as next-generation materials for gates in transistors because of their negative differential capacitance. Emerging transistors, such as the negative capacitance field effect transistor (NCFET) and ferroelectric field-effect transistor (FeFET), are based on the use of ferroelectric materials. In this work, using a multidomain 3D phase field model (based on the time-dependent Ginzburg–Landau equation), we investigate the impact of the interface-trapped charge (Qit) on the transient negative capacitance in a ferroelectric capacitor (i.e., metal/Zr-HfO2/heavily doped Si) in series with a resistor. The simulation results show that the interface trap reinforces the effect of transient negative capacitance.


2012 ◽  
Vol 190-191 ◽  
pp. 522-527
Author(s):  
Zhi Yi Ruan ◽  
Sheng Da Zeng ◽  
Li Xin Lin ◽  
Lu Rong Wu

Using fractal theory simulation of dendrite crystal DLA growth model of pure substance, the undercooling during solidification process of crystal nucleation is simulated; and then in the crystal nuclei are formed on the basis of a pure substance, the phase field model and combined with the finite difference method further differentiation simulation of dendrite crystal growth. According to MATLAB programming, the simulation results obtained by field and temperature field can be seen in the DLA growth, growth model with random premise, for the same kind of material simulated dendrite crystal have both similarities and differences exist. Then, we can get the conclusion, through fractal growth of DLA model with phase field model of dendrite nucleation, growth process is carried out the simulation results, a simple by phase field model is more accord with the dendrite crystal in the experiment.


2012 ◽  
Vol 490-495 ◽  
pp. 3339-3343
Author(s):  
Fei Huo ◽  
Ji Wei Zhao

In this paper, a phase field model based on Ginzburg-Landau theory is used to analyze the topological phenomena during grain growth. The simulation results show that two topological transformations exist during the grain growth—Neighbor Switching and Grain Annihilation; and we have found different kinds of topological events during the disappearance of a grain: direct vanishing of trilateral grain and pentagonal grain, as well as neighbor switching,which are right with classical topological theory and Euler formula. The simulation results are similar with experiments.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 441 ◽  
Author(s):  
Shimeng Wang ◽  
Lingxia Fu ◽  
Zhenggang Nai ◽  
Jun Liang ◽  
Baocheng Cao

In this work, one coating is comprised of ZrO2 and the other consists of MgO as main phase composition was produced on AZ31 magnesium alloy using one-step plasma electrolytic oxidation (PEO). The purpose of this work was to study the corrosion resistance and cytocompatibility of the above-coated AZ31 magnesium alloys in order to provide a basis for AZ31 Mg alloy’s clinical applications of biomedical use. The morphology and phase composition of the coatings were studied using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion properties were examined using electrochemical testing, hydrogen evolution measurements, and immersion tests in a simulated body fluid (SBF). Compared with bare magnesium and the MgO coating, the ZrO2-containing coating exhibited an improved corrosion resistance. Cell proliferation assays and cell morphology observations showed that the ZrO2-containing coating was not toxic to the L-929 cells. The ZrO2 coating was much denser and more homogeneous than the MgO coating, hence the corrosion resistance of the ZrO2-coated AZ31 Mg alloy was superior and more stable than the MgO-coated AZ31 Mg alloy, and ZrO2/AZ31 did not induce a cytotoxic reaction to L-929 cells and promote cell growth.


2015 ◽  
Vol 1088 ◽  
pp. 238-241
Author(s):  
Xun Feng Yuan ◽  
Yan Yang

Numerical simulations based on a new regularized phase field model were presented, simulating the solidification of magnesium alloy. The effects of weak and strong interfacial energy anisotropy on the dendrite growth are studied. The results indicate that with weak interfacial energy anisotropy, the entire dendrite displays six-fold symmetry and no secondary branch appeared. Under strong interfacial energy anisotropy conditions, corners form on both the main stem and the tips of the side branches of the dendrites, the entire facet dendrite displays six-fold symmetry. As the solidification time increases, the tip temperature and velocity of the dendrite and facet dendrite finally tend to stable values. The stable velocity of the facet dendrite is 0.4 at ε6 is 0.05 and this velocity is twice that observed (0.2) at ε6 is 0.005.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
M. J. Welland ◽  
K. D. Colins ◽  
N. Ofori-Opoku ◽  
A. A. Prudil ◽  
E. S. Thomas

Abstract The behavior of fission gas, notably accommodation within intra- and intergranular bubbles, influences the macroscopic properties and overall performance of oxide fuels. This work discusses progress to capture key fission gas-related phenomena with modern mesoscale techniques: the interaction of grain growth and irradiation by a phase-field crystal (PFC) method; overpressurized intragranular bubble migration in a vacancy gradient by a linearized phase-field model; and intergranular bubble interlinkage and percolation by the included phase model (IPM). An outlook on the impact of these models for the investigation of unit mechanisms of fission gas behavior and integration of them into fuel-performance codes is presented.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5925-5930 ◽  
Author(s):  
INSOO KIM ◽  
SAIDMUROD AKRAMOV

Formability is very important parameter of magnesium alloy sheets and it would be related to the texture of sheet metals. In this study, magnesium alloy sheets with strong {0002} texture were cut along the angles of 0, 12.5, 25 and 37.5 degrees to rolling direction (RD). Prepared samples were rolled at room temperature condition. Cold rolled AZ31 magnesium alloy sheets along the angles of 0, 12.5, 25, 37.5 and 45 degrees to rolling direction were investigated microstructure and texture with optical microscopy and x-ray diffractometer, respectively.


Sign in / Sign up

Export Citation Format

Share Document