Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers

2017 ◽  
Vol 149 ◽  
pp. 12-30 ◽  
Author(s):  
Brian Hand ◽  
Ger Kelly ◽  
Andrew Cashman
2018 ◽  
Vol 844 ◽  
pp. 707-720 ◽  
Author(s):  
Mark A. Miller ◽  
Subrahmanyam Duvvuri ◽  
Ian Brownstein ◽  
Marcus Lee ◽  
John O. Dabiri ◽  
...  

Laboratory experiments were performed on a geometrically scaled vertical-axis wind turbine model over an unprecedented range of Reynolds numbers, including and exceeding those of the full-scale turbine. The study was performed in the high-pressure environment of the Princeton High Reynolds number Test Facility (HRTF). Utilizing highly compressed air as the working fluid enabled extremely high Reynolds numbers while still maintaining dynamic similarity by matching the tip speed ratio (defined as the ratio of tip velocity to free stream, $\unicode[STIX]{x1D706}=\unicode[STIX]{x1D714}R/U$) and Mach number (defined at the turbine tip, $Ma=\unicode[STIX]{x1D714}R/a$). Preliminary comparisons are made with measurements from the full-scale field turbine. Peak power for both the field data and experiments resides around $\unicode[STIX]{x1D706}=1$. In addition, a systematic investigation of trends with Reynolds number was performed in the laboratory, which revealed details about the asymptotic behaviour. It was shown that the parameter that characterizes invariance in the power coefficient was the Reynolds number based on blade chord conditions ($Re_{c}$). The power coefficient reaches its asymptotic value when $Re_{c}>1.5\times 10^{6}$, which is higher than what the field turbine experiences. The asymptotic power curve is found, which is invariant to further increases in Reynolds number.


AIAA Journal ◽  
2014 ◽  
Vol 52 (2) ◽  
pp. 456-462 ◽  
Author(s):  
David Greenblatt ◽  
Amos Ben-Harav ◽  
Hanns Mueller-Vahl

2015 ◽  
Vol 57 ◽  
pp. 144-158 ◽  
Author(s):  
K.M. Almohammadi ◽  
D.B. Ingham ◽  
L. Ma ◽  
M. Pourkashanian

2022 ◽  
Author(s):  
David Bensason ◽  
Sébastien Le Fouest ◽  
Anna M. Young ◽  
Karen Mulleners

2020 ◽  
Vol 23 (4) ◽  
pp. 771-780
Author(s):  
Anh Ngoc VU ◽  
Ngoc Son Pham

This study describes an effectively analytic methodology to investigate the aerodynamic performance of H vertical axis wind turbine (H-VAWT). An in-house code based on double multiple stream tube theory (DMST) coupled with dynamic stall and wake correction is implemented to estimate the power coefficient. Design optimization of airfoil shape is conducted to study the influences of the dynamic stall and turbulent wakes. Airfoil shape is universally investigated by using the Class/Shape function transformation method. The airfoil study shows that the upper curve tends to be less convex than the lower curve in order to extract more energy of the wind upstream and generate less drag of the blade downstream. The optimal results show that the power coefficient increases by 6.5% with the new airfoil shape.


Sign in / Sign up

Export Citation Format

Share Document