scholarly journals Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule

2019 ◽  
Vol 105 ◽  
pp. 277-290 ◽  
Author(s):  
Dechun Lu ◽  
Jingyu Liang ◽  
Xiuli Du ◽  
Chao Ma ◽  
Zhiwei Gao
2021 ◽  
Author(s):  
Jingyu Liang ◽  
Dechun Lu ◽  
Xiuli Du ◽  
Wei Wu ◽  
Chao Ma

A non-orthogonal elastoplastic constitutive model for sand with dilatancy is presented in the characteristic stress space. Dilatancy of sand is represented by the direction of plastic flow, which can be directly determined by applying the non-orthogonal plastic flow rule to an improved elliptic yield function. A new hardening parameter is developed to describe the contractive and dilative volume change during the shear process, which is co-ordinated with the non-orthogonal plastic flow direction. The combination of the non-orthogonal plastic flow rule and the proposed hardening parameter renders the proposed model with the ability to reasonably describe the stress-strain relationship of sand with dilatancy. The model performance is evaluated by comparing with the experimental data of sand under triaxial stress conditions.


2004 ◽  
Vol 41 (4) ◽  
pp. 657-671 ◽  
Author(s):  
Wadud Salim ◽  
Buddhima Indraratna

A new elastoplastic stress–strain constitutive model is developed for granular coarse aggregates incorporating the degradation of particles during triaxial shearing. Coarse granular aggregates are subjected to breakage during excessive stress changes. Most of the available constitutive models do not consider the degradation of particles during shearing. In the current model, a plastic flow rule has been developed incorporating the energy consumption due to particle breakage during shear deformation. A non-associated flow and a kinematic type yield locus have been adopted in the model. A general formulation for the rate of particle breakage during shearing has been developed and incorporated in the plastic flow rule. The effects of particle breakage on the plastic distortional and volumetric deformations are incorporated in the current model. The stress–strain formulations are developed within the general critical state framework. The model can accurately predict the stress–strain and volume change behaviour of coarse granular aggregates. The plastic dilation and contraction features of coarse aggregates at various confining pressures are well captured, and the strain-hardening and post-peak strain-softening behaviour of coarse granular media is adequately represented. A particular feature of the model is its capability to predict the degree of particle breakage at any stage of shear deformation.Key words: constitutive modelling, coarse granular aggregates, particle breakage, dilatancy, non-associated flow, plasticity.


2005 ◽  
Vol 21 (2) ◽  
pp. 321-351 ◽  
Author(s):  
K HASHIGUCHI

2021 ◽  
Author(s):  
Jingyu Liang ◽  
Dechun Lu ◽  
Xin Zhou ◽  
Xiuli Du ◽  
Wei Wu

A non-orthogonal elastoplastic model for clay is proposed by combining the non-orthogonal plastic flow rule with the critical state concept, and the model framework is presented from the perspective of the magnitude and direction of the plastic strain increment. The magnitude is obtained based on the improved elliptical yield function and the plastic volumetric strain dependent hardening parameter. The direction is determined by ap-plying the non-orthogonal plastic flow rule with the Riemann-Liouville fractional derivative to the yield function without the necessity of additional plastic potential function. The presented approach gives rise to a simple model for soil with five parameters. All parameters have clear physical meaning and can be easily identified by triaxial tests. The model performance is shown by analyzing the evolution process of the yield surface, the hardening rule and the plastic flow direction. The capability of the proposed model to capture the mechanical behaviours of clay with different stiffness is also confirmed by predicting test results from the literature.


Sign in / Sign up

Export Citation Format

Share Document