granular soils
Recently Published Documents


TOTAL DOCUMENTS

824
(FIVE YEARS 178)

H-INDEX

44
(FIVE YEARS 7)

2022 ◽  
Vol 12 (1) ◽  
pp. 1-26
Author(s):  
V. S. R. Annapareddy ◽  
T. Bore ◽  
M. Bajodek ◽  
A. Scheuermann

This letter proposes semi-analytical methods to obtain the local permeability for granular soils based on indirect measurements of the local porosity profile in a large coaxial cell permeameter using spatial time domain reflectometry. The porosity profile is used to obtain the local permeability using the modified Kozeny-Carman and Katz-Thompson equations, which incorporated an effective particle diameter that accounted for particle migration within the permeameter. The profiles of the local permeability obtained from the proposed methods are compared with experimentally obtained permeability distributions using pressure measurements and flow rate. The permeabilities obtained with the proposed methods are comparable with the experimentally obtained permeabilities and are within one order of magnitude deviation, which is an acceptable range for practical applications.


Philosophies ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 103
Author(s):  
Benjamin C. Jantzen

Despite their centrality to the scientific enterprise, both the nature of scientific variables and their relation to inductive inference remain obscure. I suggest that scientific variables should be viewed as equivalence classes of sets of physical states mapped to representations (often real numbers) in a structure preserving fashion, and argue that most scientific variables introduced to expand the degrees of freedom in terms of which we describe the world can be seen as products of an algorithmic inductive inference first identified by William W. Rozeboom. This inference algorithm depends upon a notion of natural kind previously left unexplicated. By appealing to dynamical kinds—equivalence classes of causal system characterized by the interventions which commute with their time evolution—to fill this gap, we attain a complete algorithm. I demonstrate the efficacy of this algorithm in a series of experiments involving the percolation of water through granular soils that result in the induction of three novel variables. Finally, I argue that variables obtained through this sort of inductive inference are guaranteed to satisfy a variety of norms that in turn suit them for use in further scientific inferences.


2021 ◽  
Vol 21 (12) ◽  
pp. 04021229
Author(s):  
Pin Zhang ◽  
Zhen-Yu Yin ◽  
Wen-Bo Chen ◽  
Yin-Fu Jin
Keyword(s):  

Géotechnique ◽  
2021 ◽  
pp. 1-38
Author(s):  
Yuxuan Wen ◽  
Yida Zhang

The critical state of granular soils needs to make proper reference to the fabric that develops at critical state. This study substantializes the concept of critical fabric surface (CFS) which attracts the fabric state of granular soils upon continuous shearing. Numerical experiments using discrete element modelling (DEM) are conducted under drained and undrained conditions with varies Lode angles. Fabric tensors are defined based on the normals of all contacts and of the strong force contacts only. Both tensors have their spherical component preserved such that the information of coordination number can be carried. A separate series of low confining pressure undrained test are conducted to probe the fabric states of soils in the post-liquefaction regime. Finally, a single CFS spanning across a wide range of coordination numbers is established based on the DEM results. The CFS concept provides an important reference state for soils sheared to large strains in complementary to the traditionally defined critical state. It provides a new perspective to interpret and model the mechanics of granular soils in both pre- and post- liquefied regimes. The evolution of fabric shows that the normalized strong-contact fabric evolves linearly with the stress ratio even for liquefied or anisotropically consolidated soils.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012030
Author(s):  
Tigo Mindiastiwi ◽  
Po-Kai Wu ◽  
Agus Bambang Siswanto ◽  
Mukhamad Afif Salim

Abstract Laboratory triaxial compression tests were carried out to investigate the mechanical behavior of dense sand and geogrid-reinforced granular soils. The tested sand having its mean particle size (D50) equal to 0.6 mm was adopted. Three geogrids with different longitudinal and transverse nominal strengths were used. The dimensions of the cylindrical soil specimen were 70 mm (diameter) × 160 mm (height). The relative density was equal to 70% for all tests. The reinforced sand specimens with one or two geogrid layers were sheared under effective confining pressures (σ′3) equal to 50 kPa. The test results of unreinforced sand indicate the general stress-strain behavior of dense sand when sheared, whereas the deviatoric stress reaches its peak value, after which it gradually decreases to ultimate value (σ1 - σ3)ult. The difference of effective confining pressure indicates that the peak of deviatoric stress Δσd = (σ1 - σ3) increases with the increase in effective confining pressure (σ′3), while the peak principal stress ratio (σ′1/σ′3) decreases with the increase (σ′3). The friction angle (ϕ′)and cohesion (c′), defined by analytical and graphical methods for unreinforced sand. Geogrid as reinforcement increasing peak shear strength. The increasing peak shear strength is more pronounced with a higher number of geogrid and the geogrid with higher stiffness. Increased in confining stress inside reinforced soil mass (Δσ3R) can be interpreted by cohesive reinforced soil (CR).


Sign in / Sign up

Export Citation Format

Share Document