plastic flow rule
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Shuangshuang Yuan ◽  
Qizhi Zhu ◽  
Wanlu Zhang ◽  
Jin Zhang ◽  
Lunyang Zhao

A micromechanical anisotropic damage model with a non-associated plastic flow rule is developed for describing the true triaxial behaviors of brittle rocks. We combine the Eshelby’s solution to the inclusion problem with the framework of irreversible thermodynamics. The main dissipative mechanisms of inelastic deformation due to the frictional sliding and damage by microcrack propagation are strongly coupled to each other. A Coulomb-type friction criterion is formulated in terms of the local stress applied onto the microcracks as the yielding function. The back-stress term contained in this local stress plays a critical role in describing the material’s hardening/softening behaviors. With a non-associated flow rule, a potential function is involved. Some analytical analysis of the non-associated micromechanical anisotropic damage model are conducted, which are useful for the model parameters calibration. The proposed model is used to simulate the laboratory tests on Westerly granite under true triaxial stresses. Comparing the numerical simulation results provided by the models with associated/non-associated plastic flow rule and experimental results, it is clear that the proposed non-associated model gives a better prediction than the previous associated model.


2021 ◽  
Author(s):  
Jingyu Liang ◽  
Dechun Lu ◽  
Xiuli Du ◽  
Wei Wu ◽  
Chao Ma

A non-orthogonal elastoplastic constitutive model for sand with dilatancy is presented in the characteristic stress space. Dilatancy of sand is represented by the direction of plastic flow, which can be directly determined by applying the non-orthogonal plastic flow rule to an improved elliptic yield function. A new hardening parameter is developed to describe the contractive and dilative volume change during the shear process, which is co-ordinated with the non-orthogonal plastic flow direction. The combination of the non-orthogonal plastic flow rule and the proposed hardening parameter renders the proposed model with the ability to reasonably describe the stress-strain relationship of sand with dilatancy. The model performance is evaluated by comparing with the experimental data of sand under triaxial stress conditions.


2021 ◽  
Author(s):  
Jingyu Liang ◽  
Dechun Lu ◽  
Xin Zhou ◽  
Xiuli Du ◽  
Wei Wu

A non-orthogonal elastoplastic model for clay is proposed by combining the non-orthogonal plastic flow rule with the critical state concept, and the model framework is presented from the perspective of the magnitude and direction of the plastic strain increment. The magnitude is obtained based on the improved elliptical yield function and the plastic volumetric strain dependent hardening parameter. The direction is determined by ap-plying the non-orthogonal plastic flow rule with the Riemann-Liouville fractional derivative to the yield function without the necessity of additional plastic potential function. The presented approach gives rise to a simple model for soil with five parameters. All parameters have clear physical meaning and can be easily identified by triaxial tests. The model performance is shown by analyzing the evolution process of the yield surface, the hardening rule and the plastic flow direction. The capability of the proposed model to capture the mechanical behaviours of clay with different stiffness is also confirmed by predicting test results from the literature.


2018 ◽  
Vol 101 ◽  
pp. 65-79 ◽  
Author(s):  
Zhenhao Shi ◽  
Richard J. Finno ◽  
Giuseppe Buscarnera

Sign in / Sign up

Export Citation Format

Share Document