Slope reliability analysis based on curvilinear local averaging of a 2-D random field

2021 ◽  
Vol 137 ◽  
pp. 104247
Author(s):  
Yi-li Yuan ◽  
Chang-ming Hu ◽  
Yuan Mei ◽  
Xue-yan Wang ◽  
Juan Wang
2015 ◽  
Vol 137 (10) ◽  
Author(s):  
Zhen Hu ◽  
Sankaran Mahadevan

This paper proposes a novel and efficient methodology for time-dependent system reliability analysis of systems with multiple limit-state functions of random variables, stochastic processes, and time. Since there are correlations and variations between components and over time, the overall system is formulated as a random field with two dimensions: component index and time. To overcome the difficulties in modeling the two-dimensional random field, an equivalent Gaussian random field is constructed based on the probability equivalency between the two random fields. The first-order reliability method (FORM) is employed to obtain important features of the equivalent random field. By generating samples from the equivalent random field, the time-dependent system reliability is estimated from Boolean functions defined according to the system topology. Using one system reliability analysis, the proposed method can get not only the entire time-dependent system probability of failure curve up to a time interval of interest but also two other important outputs, namely, the time-dependent probability of failure of individual components and dominant failure sequences. Three examples featuring series, parallel, and combined systems are used to demonstrate the effectiveness of the proposed method.


Author(s):  
Zhen Hu ◽  
Xiaoping Du

Interval variables are commonly encountered in design, especially in the early design stages when data are limited. Thus, reliability analysis (RA) should deal with both interval and random variables and then predict the lower and upper bounds of reliability. The analysis is computationally intensive, because the global extreme values of a limit-state function with respect to interval variables must be obtained during the RA. In this work, a random field approach is proposed to reduce the computational cost with two major developments. The first development is the treatment of a response variable as a random field, which is spatially correlated at different locations of the interval variables. Equivalent reliability bounds are defined from a random field perspective. The definitions can avoid the direct use of the extreme values of the response. The second development is the employment of the first-order reliability method (FORM) to verify the feasibility of the random field modeling. This development results in a new random field method based on FORM. The new method converts a general response variable into a Gaussian field at its limit state and then builds surrogate models for the autocorrelation function and reliability index function with respect to interval variables. Then, Monte Carlo simulation is employed to estimate the reliability bounds without calling the original limit-state function. Good efficiency and accuracy are demonstrated through three examples.


Sign in / Sign up

Export Citation Format

Share Document