Preparation of highly electrically conductive carbon-fiber composites with high interlaminar fracture toughness by using silver-plated interleaves

2019 ◽  
Vol 176 ◽  
pp. 29-36 ◽  
Author(s):  
Miaocai Guo ◽  
Xiaosu Yi ◽  
Chris Rudd ◽  
Xiaoling Liu
2018 ◽  
Vol 37 (18) ◽  
pp. 1131-1141 ◽  
Author(s):  
Nisrin R Abdelal ◽  
Steven L Donaldson

In the current study, the production of multifunctional hybrid-stitched composites with improved interlaminar fracture toughness and electromagnetic interference shielding effectiveness is reported. Unidirectional carbon fiber-epoxy composite laminates stitched with Kevlar, nylon, hybrid stitched with both Kevlar and nylon and unstitched were prepared using resin infusion process. Representative specimens from unstitched and stitched composites were tested using rectangular waveguide and Mode I double cantilever beam tests. The Mode I experimental results showed that composite stitched with Kevlar exhibited the highest crack initiation interlaminar fracture toughness (GIC-initiation), whereas composite stitched with nylon exhibited the highest maximum crack propagation interlaminar fracture toughness (GIC-maximum). The four-hybrid stitching patterns exhibited higher GIC-initiation than the unstitched and stitched with nylon composites and lower than stitched with Kevlar composite, whereas they had higher GIC-maximum than the unstitched and stitched with Kevlar composites, although lower than stitched with nylon composite. The electromagnetic shielding effectiveness experimental results showed that stitched composites exhibited improved shielding effectiveness compared to unstitched composites. For example, composite stitched with nylon had highest shielding effectiveness value of 52.17 dB compared by the composite stitched with Kevlar which had 40.6 dB. The four hybrid-stitched composites exhibited similar shielding effectiveness with an average value of 32.75 dB compared to the unstitched composite shielding effectiveness of 22.84 dB. The experimental results comply with the initial goal of this study to manufacture multifunctional hybrid stitching composites with combined properties between Kevlar and nylon-stitched composites.


1989 ◽  
Vol 170 ◽  
Author(s):  
J. A. Hinkley ◽  
W. D. Bascom ◽  
R. E. Allred

AbstractThe surfaces of commercial carbon fibers are generally chemically cleaned or oxidized and then coated with an oligomeric sizing to optimize their adhesion to epoxy matrix resins. Evidence from fractography, from embedded fiber testing and from fracture energies suggests that these standard treatments are relatively ineffective for thermoplastic matrices. This evidence is reviewed and model thermoplastic composites (polyphenylene oxide/high strain carbon fibers) are used to demonstrate how differences in adhesion can lead to a two-fold change in interlaminar fracture toughness.The potential for improved adhesion via plasma modification of fiber surfaces is discussed. Finally, a surprising case of fiber-catalyzed resin degradation is described.


Sign in / Sign up

Export Citation Format

Share Document