Interlaminar fracture toughness and electromagnetic interference shielding of hybrid-stitched carbon fiber composites

2018 ◽  
Vol 37 (18) ◽  
pp. 1131-1141 ◽  
Author(s):  
Nisrin R Abdelal ◽  
Steven L Donaldson

In the current study, the production of multifunctional hybrid-stitched composites with improved interlaminar fracture toughness and electromagnetic interference shielding effectiveness is reported. Unidirectional carbon fiber-epoxy composite laminates stitched with Kevlar, nylon, hybrid stitched with both Kevlar and nylon and unstitched were prepared using resin infusion process. Representative specimens from unstitched and stitched composites were tested using rectangular waveguide and Mode I double cantilever beam tests. The Mode I experimental results showed that composite stitched with Kevlar exhibited the highest crack initiation interlaminar fracture toughness (GIC-initiation), whereas composite stitched with nylon exhibited the highest maximum crack propagation interlaminar fracture toughness (GIC-maximum). The four-hybrid stitching patterns exhibited higher GIC-initiation than the unstitched and stitched with nylon composites and lower than stitched with Kevlar composite, whereas they had higher GIC-maximum than the unstitched and stitched with Kevlar composites, although lower than stitched with nylon composite. The electromagnetic shielding effectiveness experimental results showed that stitched composites exhibited improved shielding effectiveness compared to unstitched composites. For example, composite stitched with nylon had highest shielding effectiveness value of 52.17 dB compared by the composite stitched with Kevlar which had 40.6 dB. The four hybrid-stitched composites exhibited similar shielding effectiveness with an average value of 32.75 dB compared to the unstitched composite shielding effectiveness of 22.84 dB. The experimental results comply with the initial goal of this study to manufacture multifunctional hybrid stitching composites with combined properties between Kevlar and nylon-stitched composites.

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1319 ◽  
Author(s):  
Ran Li ◽  
Huiping Lin ◽  
Piao Lan ◽  
Jie Gao ◽  
Yan Huang ◽  
...  

Lightweight electromagnetic interference shielding cellulose foam/carbon fiber composites were prepared by blending cellulose foam solution with carbon fibers and then freeze drying. Two kinds of carbon fiber (diameter of 7 μm) with different lengths were used, short carbon fibers (SCF, L/D = 100) and long carbon fibers (LCF, L/D = 300). It was observed that SCFs and LCFs built efficient network structures during the foaming process. Furthermore, the foaming process significantly increased the specific electromagnetic interference shielding effectiveness from 10 to 60 dB. In addition, cellulose/carbon fiber composite foams possessed good mechanical properties and low thermal conductivity of 0.021–0.046 W/(m·K).


2018 ◽  
Vol 40 (S2) ◽  
pp. E1029-E1040
Author(s):  
Rita de Cássia Mendonça Sales ◽  
Fernando Guimarães ◽  
Ricardo Francisco Gouvêa ◽  
Geraldo Maurício Cândido ◽  
Maurício Vicente Donadon

2013 ◽  
Vol 577-578 ◽  
pp. 73-76 ◽  
Author(s):  
Hideaki Katogi ◽  
Kenichi Takemura

In this study, effect of Carbon Milled Fiber (CMF) addition on interlaminar fracture toughness of carbon fiber reinforced plastics (CFRP) was investigated. Plain woven carbon fiber was used as reinforcement. Epoxy resin was used as matrix. The addition amounts of CMF are 0.5wt%, 0.8wt%, 1.0wt% and 1.2wt% for the epoxy resin. Mode I and mode II interlaminar fracture toughness tests were conducted based on JIS K 7086. As a result, mode I and mode II interlaminar fracture toughness increased with an increase of addictive amount of CMF. But excess addition was not effective. Pull out of CMF in matrix was found after mode I and mode II interlaminar fracture toughness tests. The mode I and mode II interlaminar fracture toughness of CMF added CFRP can be improved by fiber bridging of CMF.


Sign in / Sign up

Export Citation Format

Share Document