electrically conductive
Recently Published Documents


TOTAL DOCUMENTS

3031
(FIVE YEARS 791)

H-INDEX

96
(FIVE YEARS 21)

2022 ◽  
Vol 236 ◽  
pp. 111403
Author(s):  
Hyungjin Son ◽  
Hyunsoo Lim ◽  
Jiyeon Moon ◽  
Dayoung Jun ◽  
Byeong-Kwon Ju ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 842
Author(s):  
Ahmed Ali Nada ◽  
Anita Eckstein Andicsová ◽  
Jaroslav Mosnáček

Electrically conductive materials that are fabricated based on natural polymers have seen significant interest in numerous applications, especially when advanced properties such as self-healing are introduced. In this article review, the hydrogels that are based on natural polymers containing electrically conductive medium were covered, while both irreversible and reversible cross-links are presented. Among the conductive media, a special focus was put on conductive polymers, such as polyaniline, polypyrrole, polyacetylene, and polythiophenes, which can be potentially synthesized from renewable resources. Preparation methods of the conductive irreversible hydrogels that are based on these conductive polymers were reported observing their electrical conductivity values by Siemens per centimeter (S/cm). Additionally, the self-healing systems that were already applied or applicable in electrically conductive hydrogels that are based on natural polymers were presented and classified based on non-covalent or covalent cross-links. The real-time healing, mechanical stability, and electrically conductive values were highlighted.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Ruben Hammerstein ◽  
Tim Schubert ◽  
Gerd Braun ◽  
Tobias Wolf ◽  
Stéphan Barbe ◽  
...  

In this work, supported cellulose acetate (CA) mixed matrix membranes (MMMs) were prepared and studied concerning their gas separation behaviors. The dispersion of carbon nanotube fillers were studied as a factor of polymer and filler concentrations using the mixing methods of the rotor–stator system (RS) and the three-roll-mill system (TRM). Compared to the dispersion quality achieved by RS, samples prepared using the TRM seem to have slightly bigger, but fewer and more homogenously distributed, agglomerates. The green γ-butyrolactone (GBL) was chosen as a polyimide (PI) polymer-solvent, whereas diacetone alcohol (DAA) was used for preparing the CA solutions. The coating of the thin CA separation layer was applied using a spin coater. For coating on the PP carriers, a short parameter study was conducted regarding the plasma treatment to affect the wettability, the coating speed, and the volume of dispersion that was applied to the carrier. As predicted by the parameter study, the amount of dispersion that remained on the carriers decreased with an increasing rotational speed during the spin coating process. The dry separation layer thickness was varied between about 1.4 and 4.7 μm. Electrically conductive additives in a non-conductive matrix showed a steeply increasing electrical conductivity after passing the so-called percolation threshold. This was used to evaluate the agglomeration behavior in suspension and in the applied layer. Gas permeation tests were performed using a constant volume apparatus at feed pressures of 5, 10, and 15 bar. The highest calculated CO2/N2 selectivity (ideal), 21, was achieved for the CA membrane and corresponded to a CO2 permeability of 49.6 Barrer.


2022 ◽  
Author(s):  
Patricia I. Scheurle ◽  
Alexander Biewald ◽  
Andre Mähringer ◽  
Achim Hartschuh ◽  
Dana D. Medina ◽  
...  

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 41
Author(s):  
Fengshi Zhang ◽  
Meng Zhang ◽  
Songyang Liu ◽  
Ci Li ◽  
Zhentao Ding ◽  
...  

Peripheral nerve injury (PNI) occurs frequently, and the prognosis is unsatisfactory. As the gold standard of treatment, autologous nerve grafting has several disadvantages, such as lack of donors and complications. The use of functional biomaterials to simulate the natural microenvironment of the nervous system and the combination of different biomaterials are considered to be encouraging alternative methods for effective tissue regeneration and functional restoration of injured nerves. Considering the inherent presence of an electric field in the nervous system, electrically conductive biomaterials have been used to promote nerve regeneration. Due to their singular physical properties, hydrogels can provide a three-dimensional hydrated network that can be integrated into diverse sizes and shapes and stimulate the natural functions of nerve tissue. Therefore, conductive hydrogels have become the most effective biological material to simulate human nervous tissue’s biological and electrical characteristics. The principal merits of conductive hydrogels include their physical properties and their electrical peculiarities sufficient to effectively transmit electrical signals to cells. This review summarizes the recent applications of conductive hydrogels to enhance peripheral nerve regeneration.


2022 ◽  
Author(s):  
V.M. Kiiko

Abstract. A correlation is established between the length of the propagating crack in electrically conductive flat specimens and the change in the field of electric potentials over the surface of the specimen when an electric current is passed through it. The experimental data correspond to the analytical solution in a two-dimensional formulation obtained by means of a conformal mapping. Work can be attributed to the field of converting mechanical values into electrical ones. This transformation simplifies the process of recording mechanical processes and provides a convenient form of their control. The work is aimed at automatic control of the process of fracture of electrically conductive materials.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 327
Author(s):  
Antanas Zinovicius ◽  
Juste Rozene ◽  
Timas Merkelis ◽  
Ingrida Bruzaite ◽  
Arunas Ramanavicius ◽  
...  

Electrically conductive polymers are promising materials for charge transfer from living cells to the anodes of electrochemical biosensors and biofuel cells. The modification of living cells by polypyrrole (PPy) causes shortened cell lifespan, burdens the replication process, and diminishes renewability in the long term. In this paper, the viability and morphology non-modified, inactivated, and PPy-modified yeasts were evaluated. The results displayed a reduction in cell size, an incremental increase in roughness parameters, and the formation of small structural clusters of polymers on the yeast cells with the increase in the pyrrole concentration used for modification. Yeast modified with the lowest pyrrole concentration showed minimal change; thus, a microbial fuel cell (MFC) was designed using yeast modified by a solution containing 0.05 M pyrrole and compared with the characteristics of an MFC based on non-modified yeast. The maximal generated power of the modified system was 47.12 mW/m2, which is 8.32 mW/m2 higher than that of the system based on non-modified yeast. The open-circuit potentials of the non-modified and PPy-modified yeast-based cells were 335 mV and 390 mV, respectively. Even though applying a PPy layer to yeast increases the charge-transfer efficiency towards the electrode, the damage done to the cells due to modification with a higher concentration of PPy diminishes the amount of charge transferred, as the current density drops by 846 μA/cm2. This decrease suggests that modification by PPy may have a cytotoxic effect that greatly hinders the metabolic activity of yeast.


Sign in / Sign up

Export Citation Format

Share Document