Analytical solutions using a higher-order refined theory for the static analysis of antisymmetric angle-ply composite and sandwich plates

2004 ◽  
Vol 64 (3-4) ◽  
pp. 405-417 ◽  
Author(s):  
K. Swaminathan ◽  
D. Ragounadin
2013 ◽  
Vol 705 ◽  
pp. 30-35
Author(s):  
K. Swaminathan ◽  
D.T. Naveenkumar

Analytical formulations and solutions to the static analysis of simply supported Functionally Graded Material (FGM) plates hitherto not reported in the literature based on a higher-order refined shear deformation theory with nine degrees-of-freedom already reported in the literature are presented. This computational model incorporates the plate deformations which account for the effect of transverse shear deformation. The transverse displacement is assumed to be constant throughout the thickness. In addition, another higher order theory with five degrees-of-freedom and the first order theory already reported in the literature are also considered for comparison. The governing equations of equilibrium using all the computational models are derived using the Principle of Minimum Potential Energy (PMPE) and the analytical solutions are obtained in closed-form using Naviers solution technique. A simply supported plate with SS-1 boundary conditions subjected to transverse loading is considered for all the problems under investigation. The varying parameters considered are the side-to-thickness ratio, power law function, edge ratio and the degree of anisotropy. Correctness of the formulation and the solution method is first established and then extensive numerical results using all the models are presented which will serve as a bench mark for future investigations.


2010 ◽  
Vol 32 (2) ◽  
pp. 95-106
Author(s):  
Tran Minh Tu

A simple refined higher-order displacement theory is used for the static analysis of laminated and sandwich plates. Both analytical and finite element solutions are developed. Numerical examples of laminated and sandwich plates are given for different thickness ratios, length-to-thickness ratios to illustrate the accuracy of the present formulation by comparing the present results with results already available in the literature.


2011 ◽  
Vol 24 (4) ◽  
pp. 434-448 ◽  
Author(s):  
Hadj Henni ABDELAZIZ ◽  
Hassen Ait ATMANE ◽  
Ismail MECHAB ◽  
Lakhdar BOUMIA ◽  
Abdelouahed TOUNSI ◽  
...  

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 525-533
Author(s):  
S. Oskooei ◽  
J. S. Hansen

2017 ◽  
Vol 21 (6) ◽  
pp. 1820-1842
Author(s):  
Wu Zhen ◽  
Ma Rui ◽  
Chen Wanji

This paper will try to overcome two difficulties encountered by the C0 three-node triangular element based on the displacement-based higher-order models. They are (i) transverse shear stresses computed from constitutive equations vanish at the clamped edges, and (ii) it is difficult to accurately produce the transverse shear stresses even using the integration of the three-dimensional equilibrium equation. Invalidation of the equilibrium equation approach ought to attribute to the higher-order derivations of displacement parameters involved in transverse shear stress components after integrating three-dimensional equilibrium equation. Thus, the higher-order derivatives of displacement parameters will be taken out from transverse shear stress field by using the three-field Hu–Washizu variational principle before the finite element procedure is implemented. Therefore, such method is named as the preprocessing method for transverse shear stresses in present work. Because the higher-order derivatives of displacement parameters have been eliminated, a C0 three-node triangular element based on the higher-order zig-zag theory can be presented by using the linear interpolation function. Performance of the proposed element is numerically evaluated by analyzing multilayered sandwich plates with different loading conditions, lamination sequences, material constants and boundary conditions, and it can be found that the present model works well in the finite element framework.


Sign in / Sign up

Export Citation Format

Share Document