The effects of using reclaimed asphalt pavements (RAP) on the long-term performance of asphalt concrete overlays

2016 ◽  
Vol 120 ◽  
pp. 335-348 ◽  
Author(s):  
Yuhong Wang
Author(s):  
James Greene ◽  
Ohhoon Kwon ◽  
Abdenour Nazef ◽  
Bouzid Choubane

Flexible pavements are often rehabilitated by milling distressed asphalt and placing new asphalt at a thickness that accounts for expected traffic growth and pavement life. However, there are many reported benefits to concrete overlays as a method to rehabilitate and preserve distressed asphalt pavements. In 1988, the Florida Department of Transportation designed and constructed an unbonded concrete overlay on US-1 between Daytona Beach and Titusville. The 1.9-mile concrete overlay was part of a larger 8-mile milling and resurfacing of a deteriorated asphalt pavement. The concrete overlay test sections were divided into three groups based on design thicknesses of 6, 7, and 8 inches. Each of these groups included subsections with three joint spacing levels and two dowel bar configurations consisting of standard 12-inch spacing and wheel path only. The overlay sections are still in service with no major rehabilitation effort. The primary distress is pavement roughness found in sections with wheel path dowels only. The section with the most cracked slabs had joint spacings of 20 ft, which is no longer recommended. This paper documents the experimental program and presents the analysis and findings.


Author(s):  
Erdem Coleri ◽  
John T. Harvey

Laboratory tests are conducted with asphalt concrete materials to determine the expected in-situ performance. In addition, laboratory test results are commonly used in mechanistic-empirical design methods for material characterization to improve the predictive accuracy of the models. However, the effectiveness of laboratory tests in characterizing the long-term performance of asphalt concrete materials needs to be validated to be able to use the results for pavement design and long-term performance prediction. Inaccurate performance characterization and prediction can directly affect the decision-making process for pavement maintenance, rehabilitation, and reconstruction and result in unexpected early failures in the field. The major objective of this study is to determine the impact of using laboratory-measured asphalt stiffness on the prediction accuracy of mechanistic-empirical models. In addition, the effect of using linear-elastic modeling assumptions (layered elastic theory) and neglecting the nonlinearity of pavement response at high load levels (and/or at high strain levels for weaker structures) on the predicted rutting performance was determined. In this study, the effectiveness of the use of laboratory asphalt stiffness tests for in-situ asphalt stiffness characterization was determined by comparing the rutting performance predicted using laboratory-measured stiffness to rutting predicted using strain-gauge backcalculated stiffness. It was determined that laboratory tests are able to characterize the in-situ stiffness characteristics of the asphalt mix used in this study and the stiffness characterization process suggested in this study can provide reliable rutting performance predictions. Results of this study are only applicable to tested rubberized asphalt concrete mixtures.


2016 ◽  
Vol 114 ◽  
pp. 261-268 ◽  
Author(s):  
Munir D. Nazzal ◽  
Md. Tanvir Iqbal ◽  
Sang Soo Kim ◽  
Ala R. Abbas ◽  
Moses Akentuna ◽  
...  

2017 ◽  
Vol 19 (3) ◽  
pp. 31-43
Author(s):  
Ju Myeong Lee ◽  
Seung Beom Baek ◽  
Kang Hoon Lee ◽  
Jo Soon Kim ◽  
Jin Hoon Jeong

Sign in / Sign up

Export Citation Format

Share Document