Shear strength of 50 MPa longitudinally reinforced concrete beams made with coarse aggregates from low strength recycled waste concrete

2021 ◽  
Vol 286 ◽  
pp. 122835
Author(s):  
Khaldoun N. Rahal ◽  
Khalad Elsayed
2020 ◽  
Author(s):  
◽  
Hoosen Ahmed Jajbhay

Research to accurately predict the shear capacity of reinforced concrete beams without shear reinforcement has been ongoing since the early 20th century. Aggregate interlock of the coarse aggregates at the shear crack interface is one of the internal mechanisms of shear transfer and a major contributor to the shear capacity of slender beams. It is plausible, therefore, to investigate if the coarse aggregate itself influences the shear capacity of a concrete beam. The influence of the type of coarse aggregate on the shear capacity of beams without shear reinforcement was investigated in this study. From the literature study an understanding of the properties of coarse aggregates was gained, the internal mechanisms of shear transfer in reinforced concrete beams without shear reinforcement were determined, and the parameters influencing shear strength were identified. Based on this information an experimental program was designed. Eighteen reinforced concrete beams without shear reinforcement were cast. The beams were cast from three different types of coarse aggregates commonly used in the Durban area, i.e., dolerite, quartzite and tillite. For each type of coarse aggregate two variations were tested, i.e., 13 mm and 19 mm maximum aggregate sizes. For each size of coarse aggregate, three concrete strengths were tested. The beams were loaded in a beam press, by applying an increasing point load offset from midspan to induce cracking on the shorter side, until shear failure of the beam occurred. For the three concrete strengths, beams cast from dolerite had the highest shear capacity while beams cast from tillite had less shear capacity than beams cast from quartzite coarse aggregate. Furthermore, beams cast from 13 mm maximum size coarse aggregate had higher shear capacity than beams cast from 19 mm aggregate. The conclusion may be drawn that the type and size of coarse aggregate does influence the shear strength of a reinforced concrete beam without shear reinforcement.


Author(s):  
Allan Carvalho Cardoso ◽  
Isaque Guerreiro Lima ◽  
Maurício de Pina Ferreira ◽  
Rafael Alves de Souza

ABSTRACT: This research evaluates the influence of the replacement of natural coarse aggregates (NCA) by recycled concrete aggregates (RCA) on the shear strength of reinforced concrete beams. Experimental tests on six reinforced concrete beams with RCA replacement ratios of 0%, 30%, and 100% are presented. Furthermore, a database with results of 170 tests on beams with RCA is used to discuss adjustments in the recommendations presented by ABNT NBR 6118 to estimate the shear strength of reinforced concrete beams. According to the Demerit Points Classification (DPC) proposed by Collins, 80% of the theoretical results obtained using models I and II from the Brazilian code fall in an appropriate safety condition range, showing that the substitution of NCA by RCA has a low impact on the shear strength reinforced concrete beams.


2021 ◽  
Vol 230 ◽  
pp. 111705
Author(s):  
Yuxing Yang ◽  
Amit H. Varma ◽  
Michael E. Kreger ◽  
Ying Wang ◽  
Kai Zhang

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3321
Author(s):  
Hyunjin Ju ◽  
Meirzhan Yerzhanov ◽  
Alina Serik ◽  
Deuckhang Lee ◽  
Jong R. Kim

The consumption of structural concrete in the construction industry is rapidly growing, and concrete will remain the main construction material for increasing urbanization all over the world in the near future. Meanwhile, construction and demolition waste from concrete structures is also leading to a significant environmental problem. Therefore, a proper sustainable solution is needed to address this environmental concern. One of the solutions can be using recycled coarse aggregates (RCA) in reinforced concrete (RC) structures. Extensive research has been conducted in this area in recent years. However, the usage of RCA concrete in the industry is still limited due to the absence of structural regulations appropriate to the RCA concrete. This study addresses a safety margin of RCA concrete beams in terms of shear capacity which is comparable to natural coarse aggregates (NCA) concrete beams. To this end, a database for reinforced concrete beams made of recycled coarse aggregates with and without shear reinforcement was established, collecting the shear specimens available from various works in the existing literature. The database was used to statistically identify the strength margin between RCA and NCA concrete beams and to calculate its safety margin based on reliability analysis. Moreover, a comparability study of RCA beams was conducted with its control specimens and with a database for conventional RC beams.


2011 ◽  
Vol 33 (12) ◽  
pp. 3189-3196 ◽  
Author(s):  
C.A. Juarez ◽  
B. Guevara ◽  
G. Fajardo ◽  
P. Castro-Borges

Sign in / Sign up

Export Citation Format

Share Document