Analysis of high-dimensional repeated measures designs: The one sample case

2008 ◽  
Vol 53 (2) ◽  
pp. 416-427 ◽  
Author(s):  
M. Rauf Ahmad ◽  
C. Werner ◽  
E. Brunner
Statistics ◽  
2015 ◽  
Vol 49 (6) ◽  
pp. 1243-1261 ◽  
Author(s):  
Markus Pauly ◽  
David Ellenberger ◽  
Edgar Brunner

2011 ◽  
Vol 11 (3) ◽  
pp. 272
Author(s):  
Ivan Gavrilyuk ◽  
Boris Khoromskij ◽  
Eugene Tyrtyshnikov

Abstract In the recent years, multidimensional numerical simulations with tensor-structured data formats have been recognized as the basic concept for breaking the "curse of dimensionality". Modern applications of tensor methods include the challenging high-dimensional problems of material sciences, bio-science, stochastic modeling, signal processing, machine learning, and data mining, financial mathematics, etc. The guiding principle of the tensor methods is an approximation of multivariate functions and operators with some separation of variables to keep the computational process in a low parametric tensor-structured manifold. Tensors structures had been wildly used as models of data and discussed in the contexts of differential geometry, mechanics, algebraic geometry, data analysis etc. before tensor methods recently have penetrated into numerical computations. On the one hand, the existing tensor representation formats remained to be of a limited use in many high-dimensional problems because of lack of sufficiently reliable and fast software. On the other hand, for moderate dimensional problems (e.g. in "ab-initio" quantum chemistry) as well as for selected model problems of very high dimensions, the application of traditional canonical and Tucker formats in combination with the ideas of multilevel methods has led to the new efficient algorithms. The recent progress in tensor numerical methods is achieved with new representation formats now known as "tensor-train representations" and "hierarchical Tucker representations". Note that the formats themselves could have been picked up earlier in the literature on the modeling of quantum systems. Until 2009 they lived in a closed world of those quantum theory publications and never trespassed the territory of numerical analysis. The tremendous progress during the very recent years shows the new tensor tools in various applications and in the development of these tools and study of their approximation and algebraic properties. This special issue treats tensors as a base for efficient numerical algorithms in various modern applications and with special emphases on the new representation formats.


Author(s):  
SCOTT CLIFFORD ◽  
GEOFFREY SHEAGLEY ◽  
SPENCER PISTON

The use of survey experiments has surged in political science. The most common design is the between-subjects design in which the outcome is only measured posttreatment. This design relies heavily on recruiting a large number of subjects to precisely estimate treatment effects. Alternative designs that involve repeated measurements of the dependent variable promise greater precision, but they are rarely used out of fears that these designs will yield different results than a standard design (e.g., due to consistency pressures). Across six studies, we assess this conventional wisdom by testing experimental designs against each other. Contrary to common fears, repeated measures designs tend to yield the same results as more common designs while substantially increasing precision. These designs also offer new insights into treatment effect size and heterogeneity. We conclude by encouraging researchers to adopt repeated measures designs and providing guidelines for when and how to use them.


Sign in / Sign up

Export Citation Format

Share Document