scholarly journals Efficient unequal probability resampling from finite populations

Author(s):  
Pier Luigi Conti ◽  
Fulvia Mecatti ◽  
Federica Nicolussi
2002 ◽  
Vol 7 (2) ◽  
pp. 45-52
Author(s):  
L. Jakučionis ◽  
V. Kleiza

Electrical properties of conductive thin films, that are produced by vacuum evaporation on the dielectric substrates, and which properties depend on their thickness, usually are anisotropic i.e. they have uniaxial anisotropy. If the condensate grow on dielectric substrates on which plane electrical field E is created the transverse voltage U⊥ appears on the boundary of the film in the direction perpendicular to E. Transverse voltage U⊥ depends on the angle γ between the applied magnetic field H and axis of light magnetisation. When electric field E is applied to continuous or grid layers, U⊥ and resistance R of layers are changed by changing γ. It means that value of U⊥ is the measure of anisotropy magnitude. Increasing voltage U0 , which is created by E, U⊥ increases to certain magnitude and later decreases. The anisotropy of continuous thin layers is excited by inequality of conductivity tensor components σ0 ≠ σ⊥. The reason of anisotropy is explained by the model which shows that properties of grain boundaries are defined by unequal probability of transient of charge carrier.


2016 ◽  
Vol 3 (4) ◽  
Author(s):  
R. C. BHARATI

Data on fruit count corresponding to primary, secondary and tertiary branches of a randomly selected guava CV. Allahabad Safeda were recorded from the guava orchard of Horticultural Research Station, Birauli. The proposed sampling scheme in which the selection probabilities are based on length of braches between two forking points was compared with equal probability(PE), probability proportional to the number of branches(PPN), probability proportional to the cross sectional area (PPA) and probability proportional to volume (PPV) method of sampling and found to be more efficient.


Author(s):  
David Hankin ◽  
Michael S. Mohr ◽  
Kenneth B. Newman

We present a rigorous but understandable introduction to the field of sampling theory for ecologists and natural resource scientists. Sampling theory concerns itself with development of procedures for random selection of a subset of units, a sample, from a larger finite population, and with how to best use sample data to make scientifically and statistically sound inferences about the population as a whole. The inferences fall into two broad categories: (a) estimation of simple descriptive population parameters, such as means, totals, or proportions, for variables of interest, and (b) estimation of uncertainty associated with estimated parameter values. Although the targets of estimation are few and simple, estimates of means, totals, or proportions see important and often controversial uses in management of natural resources and in fundamental ecological research, but few ecologists or natural resource scientists have formal training in sampling theory. We emphasize the classical design-based approach to sampling in which variable values associated with units are regarded as fixed and uncertainty of estimation arises via various randomization strategies that may be used to select samples. In addition to covering standard topics such as simple random, systematic, cluster, unequal probability (stressing the generality of Horvitz–Thompson estimation), multi-stage, and multi-phase sampling, we also consider adaptive sampling, spatially balanced sampling, and sampling through time, three areas of special importance for ecologists and natural resource scientists. The text is directed to undergraduate seniors, graduate students, and practicing professionals. Problems emphasize application of the theory and R programming in ecological and natural resource settings.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2249-2258 ◽  
Author(s):  
Mark M Iles ◽  
Kevin Walters ◽  
Chris Cannings

AbstractIt is well known that an allele causing increased recombination is expected to proliferate as a result of genetic drift in a finite population undergoing selection, without requiring other mechanisms. This is supported by recent simulations apparently demonstrating that, in small populations, drift is more important than epistasis in increasing recombination, with this effect disappearing in larger finite populations. However, recent experimental evidence finds a greater advantage for recombination in larger populations. These results are reconciled by demonstrating through simulation without epistasis that for m loci recombination has an appreciable selective advantage over a range of population sizes (am, bm). bm increases steadily with m while am remains fairly static. Thus, however large the finite population, if selection acts on sufficiently many loci, an allele that increases recombination is selected for. We show that as selection acts on our finite population, recombination increases the variance in expected log fitness, causing indirect selection on a recombination-modifying locus. This effect is enhanced in those populations with more loci because the variance in phenotypic fitnesses in relation to the possible range will be smaller. Thus fixation of a particular haplotype is less likely to occur, increasing the advantage of recombination.


Sign in / Sign up

Export Citation Format

Share Document