scholarly journals Optimal pebbling number of graphs with given minimum degree

2019 ◽  
Vol 260 ◽  
pp. 117-130
Author(s):  
A. Czygrinow ◽  
G. Hurlbert ◽  
G.Y. Katona ◽  
L.F. Papp
2019 ◽  
Vol 342 (7) ◽  
pp. 2148-2157 ◽  
Author(s):  
Ervin Győri ◽  
Gyula Y. Katona ◽  
László F. Papp ◽  
Casey Tompkins

2009 ◽  
Vol 13 (2A) ◽  
pp. 419-429 ◽  
Author(s):  
Chin-Lin Shiue ◽  
Hung-Lin Fu

2000 ◽  
Vol 222 (1-3) ◽  
pp. 89-100 ◽  
Author(s):  
Hung-Lin Fu ◽  
Chin-Lin Shiue

2019 ◽  
Vol 17 (1) ◽  
pp. 582-587
Author(s):  
Ze-Tu Gao ◽  
Jian-Hua Yin

Abstract Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The optimal pebbling number of G, denoted by πopt(G), is the smallest number m such that for some distribution of m pebbles on G, one pebble can be moved to any vertex of G by a sequence of pebbling moves. Let Pk be the path on k vertices. Snevily defined the n–k spindle graph as follows: take n copies of Pk and two extra vertices x and y, and then join the left endpoint (respectively, the right endpoint) of each Pk to x (respectively, y), the resulting graph is denoted by S(n, k), and called the n–k spindle graph. In this paper, we determine the optimal pebbling number for spindle graphs.


2020 ◽  
Vol 36 (3) ◽  
pp. 803-829
Author(s):  
Ervin Győri ◽  
Gyula Y. Katona ◽  
László F. Papp

2019 ◽  
Vol 10 (6) ◽  
pp. 1322-1331
Author(s):  
Joice Punitha M ◽  
Suganya A
Keyword(s):  

10.37236/1725 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Yair Caro ◽  
Raphael Yuster

Let $G$ be a graph. For a given positive integer $d$, let $f_G(d)$ denote the largest integer $t$ such that in every coloring of the edges of $G$ with two colors there is a monochromatic subgraph with minimum degree at least $d$ and order at least $t$. Let $f_G(d)=0$ in case there is a $2$-coloring of the edges of $G$ with no such monochromatic subgraph. Let $f(n,k,d)$ denote the minimum of $f_G(d)$ where $G$ ranges over all graphs with $n$ vertices and minimum degree at least $k$. In this paper we establish $f(n,k,d)$ whenever $k$ or $n-k$ are fixed, and $n$ is sufficiently large. We also consider the case where more than two colors are allowed.


2006 ◽  
Vol 51 (4) ◽  
pp. 269-280 ◽  
Author(s):  
Daniela Kühn ◽  
Deryk Osthus
Keyword(s):  

2021 ◽  
pp. 105566562110106
Author(s):  
Yoshitaka Matsuura ◽  
Hideaki Kishimoto

Although primary surgery for cleft lip has improved over time, the degree of secondary cleft or nasal deformity reportedly varies from a minimum degree to a remarkable degree. Patients with cleft often worry about residual nose deformity, such as a displaced columella, a broad nasal floor, and a deviation of the alar base on the cleft side. Some of the factors that occur in association with secondary cleft or nasal deformity include a deviation of the anterior nasal spine, a deflected septum, a deficiency of the orbicularis muscle, and a lack of bone underlying the nose. Secondary cleft and nasal deformity can result from incomplete muscle repair at the primary cleft operation. Therefore, surgeons should manage patients individually and deal with various deformities by performing appropriate surgery on a case-by-case basis. In this report, we applied the simple method of single VY-plasty on the nasal floor to a patient with unilateral cleft to revise the alar base on the cleft side. We adopted this approach to achieve overcorrection on the cleft side during surgery, which helped maintain the appropriate position of the alar base and ultimately balanced the nose foramen at 13 months after the operation. It was also possible to complement the height of the nasal floor without a bone graft. We believe that this approach will prove useful for managing cases with a broad and low nasal floor, thereby enabling the reconstruction of a well-balanced nose.


2019 ◽  
Vol 342 (11) ◽  
pp. 3047-3056
Author(s):  
Chengfu Qin ◽  
Weihua He ◽  
Kiyoshi Ando

Sign in / Sign up

Export Citation Format

Share Document