left endpoint
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Wei Xu ◽  
Cheng Wang ◽  
Mingyan He ◽  
Wenbin Chen ◽  
Weimin Han ◽  
...  

AbstractThis paper is devoted to numerical analysis of doubly-history dependent variational inequalities in contact mechanics. A fully discrete method is introduced for the variational inequalities, in which the doubly-history dependent operator is approximated by repeated left endpoint rule and the spatial variable is approximated by the linear element method. An optimal order error estimate is derived under appropriate solution regularities, and numerical examples illustrate the convergence orders of the method.


Author(s):  
Valentin Iliev

We define degree of dependence of two events A and B in a probability space by using Boltzmann-Shannon entropy function of an appropriate probability distribution produced by these events and depending on one parameter (the probability of intersection of A and B) varying within a closed interval I. The entropy function attains its global maximum when the events A and B are independent. The important particular case of discrete uniform probability space motivates this definition in the following way. The entropy function has a minimum at the left endpoint of I exactly when one of the events and the complement of the other are connected with the relation of inclusion (maximal negative dependence). It has a minimum at the right endpoint of I exactly when one of these events is included in the other (maximal positive dependence). Moreover, the deviation of the entropy from its maximum is equal to average information that carries one of the binary trials defined by A and B with respect to the other. As a consequence, the degree of dependence of A and B can be expressed in terms of information theory and is invariant with respect to the choice of unit of information. Using this formalism, we describe completely the screening tests and their reliability, measure efficacy of a vaccination, the impact of some events from the financial markets to other events, etc. A link is available for downloading an Excel program which calculates the degree of dependence of two events in a sample space with equally likely outcomes.


Author(s):  
Valentin Iliev

We define degree of dependence of two events A and B in a probability space by using Boltzmann-Shannon entropy function of an appropriate probability distribution produced by these events and depending on one parameter (the probability of intersection of A and B) varying within a closed interval I. The entropy function attains its global maximum when the events A and B are independent. The important particular case of discrete uniform probability space motivates this definition in the following way. The entropy function has a minimum at the left endpoint of I exactly when one of the events and the complement of the other are connected with the relation of inclusion (maximal negative dependence). It has a minimum at the right endpoint of I exactly when one of these events is included in the other (maximal positive dependence). Moreover, the deviation of the entropy from its maximum is equal to average information that carries one of the binary trials defined by A and B with respect to the other. As a consequence, the degree of dependence of A and B can be expressed in terms of information theory and is invariant with respect to the choice of unit of information. Using this formalism, we describe completely the screening tests and their reliability, measure efficacy of a vaccination, the impact of some events from the financial markets to other events, etc.


Author(s):  
Valentin Iliev

We define degree of dependence of two events A and B in a probability space by using Boltzmann-Shannon entropy function of an appropriate probability distribution produced by these events and depending on one parameter (the probability of intersection of A and B) varying within a closed interval I. The entropy function attains its global maximum when the events A and B are independent. The important particular case of discrete uniform probability space motivates this definition in the following way. The entropy function has a minimum at the left endpoint of I exactly when one of the events and the complement of the other are connected with the relation of inclusion (maximal negative dependence). It has a minimum at the right endpoint of I exactly when one of these events is included in the other (maximal positive dependence). Moreover, the deviation of the entropy from its maximum is equal to average information that carries one of the binary trials defined by A and B with respect to the other. As a consequence, the degree of dependence of A and B can be expressed in terms of information theory and is invariant with respect to the choice of unit of information. Using this formalism, we describe completely the screening tests and their reliability, measure efficacy of a vaccination, the impact of some events from the financial markets to other events, etc.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhang Xiao ◽  
Kang Hongpu

In order to make clear the pressure relief mechanism and application effect of directional hydraulic fracturing for gob-side entry retaining, the directional hydraulic fracturing was carried out by 400 m in haulage gateway remaining along the goaf in 50108 working face of Hejiata Coal Mine. Taking this as the engineering background, a mechanical model of roof cutting was established and the pressure relief mechanism was clarified. The theoretical research shows that it is the moments of gravity FG of the curved triangular roof plate at the face end, the pressure q of the overlying soft rock, and the transverse force TCB in the “voussoir beam” structure to the left endpoint of the triangular block, that is, M F G , M q , and M T CB , which determines the roadside supporting resistance. Hydraulic fracturing can reduce the lateral cantilever length of the basic roof, thus greatly reducing the values of M F G , M T CB , and M q , and significantly reduce the roadside supporting resistance. The field test shows that the directional hydraulic fracturing technology can effectively improve the stress environment of the face end and reduce the deformation of the roadway, and it has a good application effect on the gob-side entry retaining.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Türker Özsarı ◽  
Kemal Cem Yılmaz

<p style='text-indent:20px;'>Backstepping based controller and observer models were designed for higher order linear and nonlinear Schrödinger equations on a finite interval in [<xref ref-type="bibr" rid="b3">3</xref>] where the controller was assumed to be acting from the left endpoint of the medium. In this companion paper, we further the analysis by considering boundary controller(s) acting at the right endpoint of the domain. It turns out that the problem is more challenging in this scenario as the associated boundary value problem for the backstepping kernel becomes overdetermined and lacks a smooth solution. The latter is essential to switch back and forth between the original plant and the so called target system. To overcome this difficulty we rely on the strategy of using an imperfect kernel, namely one of the boundary conditions in kernel PDE model is disregarded. The drawback is that one loses rapid stabilization in comparison with the left endpoint controllability. Nevertheless, the exponential decay of the <inline-formula><tex-math id="M1">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-norm with a certain rate still holds. The observer design is associated with new challenges from the point of view of wellposedness and one has to prove smoothing properties for an associated initial boundary value problem with inhomogeneous boundary data. This problem is solved by using Laplace transform in time. However, the Bromwich integral that inverts the transformed solution is associated with certain analyticity issues which are treated through a subtle analysis. Numerical algorithms and simulations verifying the theoretical results are given.</p>


2021 ◽  
Vol 16 (3) ◽  
pp. 979-1015
Author(s):  
Narayana R. Kocherlakota

I study a class of macroeconomic models in which all firms can costlessly choose any price at each date from an interval (indexed to last period's price level) that includes a positive lower bound. I prove three results that are valid for any such half‐closed interval (regardless of how near zero the left endpoint is). First, given any output sequence that is uniformly bounded from above by the moneyless equilibrium output level, that bounded output sequence is an equilibrium outcome for a (possibly time‐dependent) specification of monetary and fiscal policy. Second, given any specification of monetary and fiscal policy in which the former is time‐invariant and the latter is Ricardian (in the sense of Woodford 1995), there is a sequence of equilibria in which consumption converges to zero on a date‐by‐date basis. These first two results suggest that standard macroeconomic models without pricing bounds may provide a false degree of confidence in macroeconomic stability and undue faith in the long‐run irrelevance of monetary policy. This paper's final result constructs a non‐Ricardian nominal framework (in which the long‐run growth rate of nominal government liabilities is sufficiently high) that pins down a unique stable real outcome as an equilibrium.


2019 ◽  
Vol 17 (1) ◽  
pp. 582-587
Author(s):  
Ze-Tu Gao ◽  
Jian-Hua Yin

Abstract Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The optimal pebbling number of G, denoted by πopt(G), is the smallest number m such that for some distribution of m pebbles on G, one pebble can be moved to any vertex of G by a sequence of pebbling moves. Let Pk be the path on k vertices. Snevily defined the n–k spindle graph as follows: take n copies of Pk and two extra vertices x and y, and then join the left endpoint (respectively, the right endpoint) of each Pk to x (respectively, y), the resulting graph is denoted by S(n, k), and called the n–k spindle graph. In this paper, we determine the optimal pebbling number for spindle graphs.


PAMM ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jussi Behrndt ◽  
Philipp Schmitz ◽  
Carsten Trunk

2019 ◽  
Vol 27 (1) ◽  
pp. 25-41
Author(s):  
Valeria Bacchelli ◽  
Dario Pierotti ◽  
Stefano Micheletti ◽  
Simona Perotto

Abstract We consider an initial-boundary value problem for the classical linear wave equation, where mixed boundary conditions of Dirichlet and Neumann/Robin type are enforced at the endpoints of a bounded interval. First, by a careful application of the method of characteristics, we derive a closed-form representation of the solution for an impulsive Dirichlet data at the left endpoint, and valid for either a Neumann or a Robin data at the right endpoint. Then we devise a reconstruction procedure for identifying both the interval length and the Robin parameter. We provide a corresponding stability result and verify numerically its performance moving from a finite element discretization.


Sign in / Sign up

Export Citation Format

Share Document