scholarly journals The Stochastic Boolean Function Evaluation problem for symmetric Boolean functions

2022 ◽  
Vol 309 ◽  
pp. 269-277
Author(s):  
Dimitrios Gkenosis ◽  
Nathaniel Grammel ◽  
Lisa Hellerstein ◽  
Devorah Kletenik
2016 ◽  
Vol 12 (1) ◽  
pp. 5-24
Author(s):  
L. Haviarová ◽  
E. Toman

Abstract In the present paper we consider symmetric Boolean functions with special property. We study properties of the maximal intervals of these functions. Later we show characteristics of corresponding interval graphs and simplified interval graphs. Specifically we prove, that these two graphs are isomorphic for symmetric Boolean function. Then we obtain the vertex degree of these graphs. We discuss also disjunctive normal forms.


2015 ◽  
Vol 7 (2) ◽  
pp. 187 ◽  
Author(s):  
Hongli Liu

The conceptions of $\chi$-value and K-rotation symmetric Boolean functions are introduced by Cusick. K-rotation symmetric Boolean functions are a special rotation symmetric functions, which are invariant under the $k-th$ power of $\rho$.In this paper, we discuss cubic 2-value 2-rotation symmetric Boolean function with $2n$ variables, which denoted by $F^{2n}(x^{2n})$. We give the recursive formula of weight of $F^{2n}(x^{2n})$, and prove that the weight of $F^{2n}(x^{2n})$ is the same as its nonlinearity.


SPIN ◽  
2021 ◽  
pp. 2140001
Author(s):  
Daowen Qiu ◽  
Guoliang Xu

Deutsch–Jozsa problem (D–J) has exact quantum 1-query complexity (“exact” means no error), but requires super-exponential queries for the optimal classical deterministic decision trees. D–J problem is equivalent to a symmetric partial Boolean function, and in fact, all symmetric partial Boolean functions having exact quantum 1-query complexity have been found out and these functions can be computed by D–J algorithm. A special case is that all symmetric Boolean functions with exact quantum 1-query complexity follow directly and these functions are also all total Boolean functions with exact quantum 1-query complexity obviously. Then there are pending problems concerning partial Boolean functions having exact quantum 1-query complexity and new results have been found, but some problems are still open. In this paper, we review these results regarding exact quantum 1-query complexity and in particular, we also obtain a new result that a partial Boolean function with exact quantum 1-query complexity is constructed and it cannot be computed by D–J algorithm. Further problems are pointed out for future study.


2017 ◽  
Vol 27 (2) ◽  
Author(s):  
Stanislav V. Smyshlyaev

AbstractThe paper is concerned with relations between the correlation-immunity (stability) and the perfectly balancedness of Boolean functions. It is shown that an arbitrary perfectly balanced Boolean function fails to satisfy a certain property that is weaker than the 1-stability. This result refutes some assertions by Markus Dichtl. On the other hand, we present new results on barriers of perfectly balanced Boolean functions which show that any perfectly balanced function such that the sum of the lengths of barriers is smaller than the length of variables, is 1-stable.


Sign in / Sign up

Export Citation Format

Share Document