Theoretical investigation of solar desalination with solar still having phase change material and connected to a solar collector

Desalination ◽  
2018 ◽  
Vol 448 ◽  
pp. 60-68 ◽  
Author(s):  
Mousa Abu-Arabi ◽  
Mohammad Al-harahsheh ◽  
Hasan Mousa ◽  
Zobaidah Alzghoul
Author(s):  
T. Maridurai ◽  
S. Rajkumar ◽  
M. Arunkumar ◽  
V. Mohanavel ◽  
K. Arul ◽  
...  

2021 ◽  
Vol 21 (2) ◽  
pp. 45-52
Author(s):  
Hazim Jassim Jaber ◽  
Qais A. Rishak ◽  
Qahtan A. Abed

Performance a double slope of the solar still Integrated With or without parabolic trough collector is investigated experimentally. To improve the output of a double slope solar still, a number of initiatives have been undertaken, using wax as a phase change material (PCM) with a parabolic trough collector. A parabolic trough collector (PTC) transfers incident solar energy to the solar still through a water tube connected to a heat exchanger embedded in used microcrystalline wax. Experiments were carried out after orienting the basin to the south and holding the water depth in the basin at 20 mm. According to the results obtained, the solar stills with parabolic trough collector have higher temperatures and productivity than solar stills without parabolic trough collector, as well as the ability to store latent heat energy in solar still, allowing fresh water to condense even after sunset. In addition, the parabolic trough collector with phase change material in the double slope solar improves productivity by 37.3 % and 42 %, respectively.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4146
Author(s):  
Agnieszka Jachura ◽  
Robert Sekret

This paper presents an environmental impact assessment of the entire cycle of existence of the tube-vacuum solar collector prototype. The innovativeness of the solution involved using a phase change material as a heat-storing material, which was placed inside the collector’s tubes-vacuum. The PCM used in this study was paraffin. The system boundaries contained three phases: production, operation (use phase), and disposal. An ecological life cycle assessment was carried out using the SimaPro software. To compare the environmental impact of heat storage, the amount of heat generated for 15 years, starting from the beginning of a solar installation for preparing domestic hot water for a single-family residential building, was considered the functional unit. Assuming comparable production methods for individual elements of the ETC and waste management scenarios, the reduction in harmful effects on the environment by introducing a PCM that stores heat inside the ETC ranges from 17 to 24%. The performed analyses have also shown that the method itself of manufacturing the materials used for the construction of the solar collector and the choice of the scenario of the disposal of waste during decommissioning the solar collector all play an important role in its environmental assessment. With an increase in the application of the advanced technologies of materials manufacturing and an increase in the amount of waste subjected to recycling, the degree of the solar collector’s environmental impact decreased by 82% compared to its standard manufacture and disposal.


2021 ◽  
Vol 1059 (1) ◽  
pp. 012010 ◽  
Author(s):  
N Boopalan ◽  
B Kalidasan ◽  
D Raj Kumar ◽  
E Ragupathi ◽  
M Gurumoorthy ◽  
...  

2021 ◽  
Vol 40 ◽  
pp. 102782
Author(s):  
A.S. Abdullah ◽  
Z.M. Omara ◽  
F.A. Essa ◽  
M.M. Younes ◽  
S. Shanmugan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document