scholarly journals Characterization of subgroup perfect codes in Cayley graphs

2020 ◽  
Vol 343 (5) ◽  
pp. 111813
Author(s):  
Jiyong Chen ◽  
Yanpeng Wang ◽  
Binzhou Xia
Keyword(s):  
2018 ◽  
Vol 17 (07) ◽  
pp. 1850126 ◽  
Author(s):  
Hailin Liu ◽  
Lei Wang

A Cayley graph [Formula: see text] is called arc-transitive if its automorphism group [Formula: see text] is transitive on the set of arcs in [Formula: see text]. In this paper, we give a characterization of cubic arc-transitive Cayley graphs on a class of Frobenius groups.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750195 ◽  
Author(s):  
Jing Jian Li ◽  
Bo Ling ◽  
Jicheng Ma

A Cayley graph [Formula: see text] is said to be core-free if [Formula: see text] is core-free in some [Formula: see text] for [Formula: see text]. A graph [Formula: see text] is called [Formula: see text]-regular if [Formula: see text] acts regularly on its [Formula: see text]-arcs. It is shown in this paper that if [Formula: see text], then there exist no core-free tetravalent [Formula: see text]-regular Cayley graphs; and for [Formula: see text], every tetravalent [Formula: see text]-regular Cayley graph is a normal cover of one of the three known core-free graphs. In particular, a characterization of tetravalent [Formula: see text]-regular Cayley graphs is given.


10.37236/185 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Jiangmin Pan

A complete characterization of locally primitive normal Cayley graphs of metacyclic groups is given. Namely, let $\Gamma={\rm Cay}(G,S)$ be such a graph, where $G\cong{\Bbb Z}_m.{\Bbb Z}_n$ is a metacyclic group and $m=p_1^{r_1}p_2^{r_2}\cdots p_t^{r_t}$ such that $p_1 < p_2 < \dots < p_t$. It is proved that $G\cong D_{2m}$ is a dihedral group, and $val(\Gamma)=p$ is a prime such that $p|(p_1(p_1-1),p_2-1,\dots,p_t-1)$. Moreover, three types of graphs are constructed which exactly form the class of locally primitive normal Cayley graphs of metacyclic groups.


2018 ◽  
Vol 12 (4) ◽  
pp. 629-639
Author(s):  
B. K. Dass ◽  
◽  
Namita Sharma ◽  
Rashmi Verma ◽  

2018 ◽  
Vol 32 (1) ◽  
pp. 548-559 ◽  
Author(s):  
He Huang ◽  
Binzhou Xia ◽  
Sanming Zhou
Keyword(s):  

2019 ◽  
Vol 17 (1) ◽  
pp. 513-518
Author(s):  
Hailin Liu

Abstract A Cayley graph Γ is said to be arc-transitive if its full automorphism group AutΓ is transitive on the arc set of Γ. In this paper we give a characterization of pentavalent arc-transitive Cayley graphs on a class of Frobenius groups with soluble vertex stabilizer.


2018 ◽  
Vol 17 (09) ◽  
pp. 1850178 ◽  
Author(s):  
Huadong Su ◽  
Yiqiang Zhou

Let [Formula: see text] be a ring with identity. The unitary Cayley graph of [Formula: see text] is the simple graph with vertex set [Formula: see text], where two distinct vertices [Formula: see text] and [Formula: see text] are linked by an edge if and only if [Formula: see text] is a unit of [Formula: see text]. A graph is said to be planar if it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In this paper, we completely characterize the rings whose unitary Cayley graphs are planar.


10.37236/3915 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Jin-Xin Zhou ◽  
Yan-Quan Feng

A bi-Cayley graph is a graph which admits a semiregular group of automorphisms with two orbits of equal size. In this paper, we give a characterization of cubic non-Cayley vertex-transitive bi-Cayley graphs over a regular $p$-group, where $p>5$ is an odd prime. As an application, a classification of cubic non-Cayley vertex-transitive graphs of order $2p^3$ is given for each prime $p$.


2020 ◽  
Vol 34 (3) ◽  
pp. 1909-1921
Author(s):  
Xuanlong Ma ◽  
Gary L. Walls ◽  
Kaishun Wang ◽  
Sanming Zhou
Keyword(s):  

1993 ◽  
Vol 03 (02) ◽  
pp. 189-199 ◽  
Author(s):  
GIOVANNA D’AGOSTINO

A geometrical characterization of the Cayley graphs of certain presentations of virtually free and plain groups is given.


Sign in / Sign up

Export Citation Format

Share Document