A characterization of rings whose unitary Cayley graphs are planar

2018 ◽  
Vol 17 (09) ◽  
pp. 1850178 ◽  
Author(s):  
Huadong Su ◽  
Yiqiang Zhou

Let [Formula: see text] be a ring with identity. The unitary Cayley graph of [Formula: see text] is the simple graph with vertex set [Formula: see text], where two distinct vertices [Formula: see text] and [Formula: see text] are linked by an edge if and only if [Formula: see text] is a unit of [Formula: see text]. A graph is said to be planar if it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In this paper, we completely characterize the rings whose unitary Cayley graphs are planar.

2016 ◽  
Vol 59 (3) ◽  
pp. 652-660
Author(s):  
Huadong Su

AbstractThe unitary Cayley graph of a ringR, denoted Γ(R), is the simple graph defined on all elements ofR, and where two verticesxandyare adjacent if and only ifx−yis a unit inR. The largest distance between all pairs of vertices of a graphGis called the diameter ofGand is denoted by diam(G). It is proved that for each integern≥ 1, there exists a ringRsuch that diam(Γ(R)) =n. We also show that diam(Γ(R)) ∊ {1, 2, 3,∞} for a ringRwithR/J(R) self-injective and classify all those rings with diam(Γ(R)) = 1, 2, 3, and ∞, respectively.


2013 ◽  
Vol 14 (04) ◽  
pp. 1350020 ◽  
Author(s):  
DEEPA SINHA ◽  
AYUSHI DHAMA

A Signed graph (or sigraph in short) is an ordered pair S = (G, σ), where G is a graph G = (V, E) and σ : E → {+, −} is a function from the edge set E of G into the set {+, −}. For a positive integer n > 1, the unitary Cayley graph Xnis the graph whose vertex set is Zn, the integers modulo n and if Undenotes set of all units of the ring Zn, then two vertices a, b are adjacent if and only if a − b ∈ Un. In this paper, we have obtained a characterization of balanced and clusterable unitary Cayley ring sigraph [Formula: see text]. Further, we have established a characterization of canonically consistent unitary Cayley ring sigraph [Formula: see text], where n has at most two distinct odd primes factors. Also sign-compatibility has been worked out for the same.


10.37236/478 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Andrew Droll

The unitary Cayley graph on $n$ vertices, $X_n$, has vertex set ${\Bbb Z}/{n\Bbb Z}$, and two vertices $a$ and $b$ are connected by an edge if and only if they differ by a multiplicative unit modulo $n$, i.e. ${\rm gcd}(a-b,n) = 1$. A $k$-regular graph $X$ is Ramanujan if and only if $\lambda(X) \leq 2\sqrt{k-1}$ where $\lambda(X)$ is the second largest absolute value of the eigenvalues of the adjacency matrix of $X$. We obtain a complete characterization of the cases in which the unitary Cayley graph $X_n$ is a Ramanujan graph.


10.37236/716 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Deepa Sinha ◽  
Pravin Garg

A $signed graph$ (or $sigraph$ in short) is an ordered pair $S = (S^u, \sigma)$, where $S^u$ is a graph $G = (V, E)$ and $\sigma : E\rightarrow \{+,-\}$ is a function from the edge set $E$ of $S^u$ into the set $\{+, -\}$. For a positive integer $n > 1$, the unitary Cayley graph $X_n$ is the graph whose vertex set is $Z_n$, the integers modulo $n$ and if $U_n$ denotes set of all units of the ring $Z_n$, then two vertices $a, b$ are adjacent if and only if $a-b \in U_n$. For a positive integer $n > 1$, the unitary Cayley sigraph $\mathcal{S}_n = (\mathcal{S}^u_n, \sigma)$ is defined as the sigraph, where $\mathcal{S}^u_n$ is the unitary Cayley graph and for an edge $ab$ of $\mathcal{S}_n$, $$\sigma(ab) = \begin{cases} + & \text{if } a \in U_n \text{ or } b \in U_n,\\ - & \text{otherwise.} \end{cases}$$ In this paper, we have obtained a characterization of balanced unitary Cayley sigraphs. Further, we have established a characterization of canonically consistent unitary Cayley sigraphs $\mathcal{S}_n$, where $n$ has at most two distinct odd prime factors.


2014 ◽  
Vol 13 (05) ◽  
pp. 1350152 ◽  
Author(s):  
YOTSANAN MEEMARK ◽  
BORWORN SUNTORNPOCH

Let R be a finite commutative ring with identity 1. The unitary Cayley graph of R, denoted by GR, is the graph whose vertex set is R and the edge set {{a, b} : a, b ∈ R and a - b ∈ R×}, where R× is the group of units of R. We define the unitary Cayley signed graph (or unitary Cayley sigraph in short) to be an ordered pair 𝒮R = (GR, σ), where GR is the unitary Cayley graph over R with signature σ : E(GR) → {1, -1} given by [Formula: see text] In this paper, we give a criterion on R for SR to be balanced (every cycle in 𝒮R is positive) and a criterion for its line graph L(𝒮R) to be balanced. We characterize all finite commutative rings with the property that the marked sigraph 𝒮R,μ is canonically consistent. Moreover, we give a characterization of all finite commutative rings where 𝒮R, η(𝒮R) and L(𝒮R) are hyperenergetic balanced.


Filomat ◽  
2015 ◽  
Vol 29 (9) ◽  
pp. 2079-2086
Author(s):  
Milan Basic ◽  
Aleksandar Ilic

The unitary Cayley graph Xn has the vertex set Zn = {0,1,2,..., n-1} and vertices a and b are adjacent, if and only if gcd(a-b,n) = 1. In this paper, we present some properties of the clique, independence and distance polynomials of the unitary Cayley graphs and generalize some of the results from [W. Klotz, T. Sander, Some properties of unitary Cayley graphs, Electr. J. Comb. 14 (2007), #R45]. In addition, using some properties of Laplacian polynomial we determine the number of minimal spanning trees of any unitary Cayley graph.


10.37236/963 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

The unitary Cayley graph $X_n$ has vertex set $Z_n=\{0,1, \ldots ,n-1\}$. Vertices $a, b$ are adjacent, if gcd$(a-b,n)=1$. For $X_n$ the chromatic number, the clique number, the independence number, the diameter and the vertex connectivity are determined. We decide on the perfectness of $X_n$ and show that all nonzero eigenvalues of $X_n$ are integers dividing the value $\varphi(n)$ of the Euler function.


2018 ◽  
Vol 7 (3) ◽  
pp. 1243 ◽  
Author(s):  
Roshan Philipose ◽  
Sarasija P B

In this paper, we determine the Gutman Index and Harary Index of Unitary Cayley Graphs. The Unitary Cayley Graph Xn is the graph with vertex set  V(Xn) ={u|u∈ Zn} and edge set {uv|gcd(u−v, n) = 1 and u, v ∈ Zn }, where Zn ={0,1,...,n−1}.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850126 ◽  
Author(s):  
Hailin Liu ◽  
Lei Wang

A Cayley graph [Formula: see text] is called arc-transitive if its automorphism group [Formula: see text] is transitive on the set of arcs in [Formula: see text]. In this paper, we give a characterization of cubic arc-transitive Cayley graphs on a class of Frobenius groups.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750195 ◽  
Author(s):  
Jing Jian Li ◽  
Bo Ling ◽  
Jicheng Ma

A Cayley graph [Formula: see text] is said to be core-free if [Formula: see text] is core-free in some [Formula: see text] for [Formula: see text]. A graph [Formula: see text] is called [Formula: see text]-regular if [Formula: see text] acts regularly on its [Formula: see text]-arcs. It is shown in this paper that if [Formula: see text], then there exist no core-free tetravalent [Formula: see text]-regular Cayley graphs; and for [Formula: see text], every tetravalent [Formula: see text]-regular Cayley graph is a normal cover of one of the three known core-free graphs. In particular, a characterization of tetravalent [Formula: see text]-regular Cayley graphs is given.


Sign in / Sign up

Export Citation Format

Share Document