On tetravalent s-regular Cayley graphs

2017 ◽  
Vol 16 (10) ◽  
pp. 1750195 ◽  
Author(s):  
Jing Jian Li ◽  
Bo Ling ◽  
Jicheng Ma

A Cayley graph [Formula: see text] is said to be core-free if [Formula: see text] is core-free in some [Formula: see text] for [Formula: see text]. A graph [Formula: see text] is called [Formula: see text]-regular if [Formula: see text] acts regularly on its [Formula: see text]-arcs. It is shown in this paper that if [Formula: see text], then there exist no core-free tetravalent [Formula: see text]-regular Cayley graphs; and for [Formula: see text], every tetravalent [Formula: see text]-regular Cayley graph is a normal cover of one of the three known core-free graphs. In particular, a characterization of tetravalent [Formula: see text]-regular Cayley graphs is given.

2018 ◽  
Vol 17 (07) ◽  
pp. 1850126 ◽  
Author(s):  
Hailin Liu ◽  
Lei Wang

A Cayley graph [Formula: see text] is called arc-transitive if its automorphism group [Formula: see text] is transitive on the set of arcs in [Formula: see text]. In this paper, we give a characterization of cubic arc-transitive Cayley graphs on a class of Frobenius groups.


2019 ◽  
Vol 17 (1) ◽  
pp. 513-518
Author(s):  
Hailin Liu

Abstract A Cayley graph Γ is said to be arc-transitive if its full automorphism group AutΓ is transitive on the arc set of Γ. In this paper we give a characterization of pentavalent arc-transitive Cayley graphs on a class of Frobenius groups with soluble vertex stabilizer.


2018 ◽  
Vol 17 (09) ◽  
pp. 1850178 ◽  
Author(s):  
Huadong Su ◽  
Yiqiang Zhou

Let [Formula: see text] be a ring with identity. The unitary Cayley graph of [Formula: see text] is the simple graph with vertex set [Formula: see text], where two distinct vertices [Formula: see text] and [Formula: see text] are linked by an edge if and only if [Formula: see text] is a unit of [Formula: see text]. A graph is said to be planar if it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In this paper, we completely characterize the rings whose unitary Cayley graphs are planar.


10.37236/3915 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Jin-Xin Zhou ◽  
Yan-Quan Feng

A bi-Cayley graph is a graph which admits a semiregular group of automorphisms with two orbits of equal size. In this paper, we give a characterization of cubic non-Cayley vertex-transitive bi-Cayley graphs over a regular $p$-group, where $p>5$ is an odd prime. As an application, a classification of cubic non-Cayley vertex-transitive graphs of order $2p^3$ is given for each prime $p$.


2013 ◽  
Vol 2013 ◽  
pp. 1-3
Author(s):  
Jing Jian Li ◽  
Ben Gong Lou ◽  
Xiao Jun Zhang

Let and . We say is -regular Cayley graph if acts regularly on its arcs. is said to be core-free if is core-free in some . In this paper, we prove that if an -regular Cayley graph of valency is not normal or binormal, then it is the normal cover of one of two core-free ones up to isomorphism. In particular, there are no core-free -regular Cayley graphs of valency .


10.37236/9934 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Shu Jiao Song

In this paper we introduce and study a type of Cayley graph – subnormal Cayley graph. We prove that a subnormal 2-arc transitive Cayley graph is a normal Cayley graph or a normal cover of a complete bipartite graph $\mathbf{K}_{p^d,p^d}$ with $p$ prime. Then we obtain a generic method for constructing half-symmetric (namely edge transitive but not arc transitive) Cayley graphs.


Author(s):  
Lotfallah Pourfaray ◽  
Modjtaba Ghorbani

A Boolean function is a function $f:\Bbb{Z}_n^2 \rightarrow \{0,1\}$ and we denote the set of all $n$-variable Boolean functions by $BF_n$. For $f\in BF_n$ the vector $[{\rm W}_f(a_0),\ldots,{\rm W}_f(a_{2n-1})]$ is called the Walsh spectrum of $f$, where ${\rm W}_f(a)= \sum_{x\in V} (-1)^{f(x) \oplus ax}$, where $V_n$ is the vector space of dimension $n$ over the two-element field $F_2$. In this paper, we shall consider the Cayley graph $\Gamma_f$ associated with a Boolean function $f$. We shall also find a complete characterization of the bent Boolean functions of order $16$ and determine the spectrum of related Cayley graphs.In addition, we shall enumerate all orbits of the action of automorphism group on the set $BF_n$. 


Author(s):  
Ashwin Sah ◽  
Mehtaab Sawhney ◽  
Yufei Zhao

Abstract Does every $n$-vertex Cayley graph have an orthonormal eigenbasis all of whose coordinates are $O(1/\sqrt{n})$? While the answer is yes for abelian groups, we show that it is no in general. On the other hand, we show that every $n$-vertex Cayley graph (and more generally, vertex-transitive graph) has an orthonormal basis whose coordinates are all $O(\sqrt{\log n / n})$, and that this bound is nearly best possible. Our investigation is motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s result to nonabelian groups.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
A. Assari ◽  
F. Sheikhmiri

A Cayley graph of a group G is called normal edge-transitive if the normalizer of the right representation of the group in the automorphism of the Cayley graph acts transitively on the set of edges of the graph. In this paper, we determine all connected normal edge-transitive Cayley graphs of the group U6n.


2012 ◽  
Vol 21 (4) ◽  
pp. 635-641
Author(s):  
ÁDÁM TIMÁR

We construct a sequence of finite graphs that weakly converge to a Cayley graph, but there is no labelling of the edges that would converge to the corresponding Cayley diagram. A similar construction is used to give graph sequences that converge to the same limit, and such that a Hamiltonian cycle in one of them has a limit that is not approximable by any subgraph of the other. We give an example where this holds, but convergence is meant in a stronger sense. This is related to whether having a Hamiltonian cycle is a testable graph property.


Sign in / Sign up

Export Citation Format

Share Document