scholarly journals A note on torsion subgroups of groups acting on finite-dimensional CAT(0) cube complexes

2020 ◽  
Vol 343 (6) ◽  
pp. 111832
Author(s):  
Anthony Genevois
2019 ◽  
Vol 22 (6) ◽  
pp. 1089-1099
Author(s):  
Motoko Kato

Abstract We give a criterion for group elements to have fixed points with respect to a semi-simple action on a complete CAT(0) space of finite topological dimension. As an application, we show that Thompson’s group T and various generalizations of Thompson’s group V have global fixed points when they act semi-simply on finite-dimensional complete CAT(0) spaces, while it is known that T and V act properly on infinite-dimensional CAT(0) cube complexes.


2019 ◽  
Vol 22 (2) ◽  
pp. 313-345 ◽  
Author(s):  
Anthony Genevois

Abstract In this article, we state and prove a general criterion allowing us to show that some groups are hyperbolically elementary, meaning that every isometric action of one of these groups on a Gromov-hyperbolic space either fixes a point at infinity, or stabilises a pair of points at infinity, or has bounded orbits. Also, we show how such a hyperbolic rigidity leads to fixed-point properties on finite-dimensional CAT(0) cube complexes. As an application, we prove that Thompson’s group V is hyperbolically elementary, and we deduce that it satisfies Property {({\rm FW}_{\infty})} , i.e., every isometric action of V on a finite-dimensional CAT(0) cube complex fixes a point. It provides the first example of a (finitely presented) group acting properly on an infinite-dimensional CAT(0) cube complex such that all its actions on finite-dimensional CAT(0) cube complexes have global fixed points.


2017 ◽  
Vol 38 (6) ◽  
pp. 2180-2223 ◽  
Author(s):  
TALIA FERNÓS

We show under weak hypotheses that $\unicode[STIX]{x2202}X$, the Roller boundary of a finite-dimensional CAT(0) cube complex $X$ is the Furstenberg–Poisson boundary of a sufficiently nice random walk on an acting group $\unicode[STIX]{x1D6E4}$. In particular, we show that if $\unicode[STIX]{x1D6E4}$ admits a non-elementary proper action on $X$, and $\unicode[STIX]{x1D707}$ is a generating probability measure of finite entropy and finite first logarithmic moment, then there is a $\unicode[STIX]{x1D707}$-stationary measure on $\unicode[STIX]{x2202}X$ making it the Furstenberg–Poisson boundary for the $\unicode[STIX]{x1D707}$-random walk on $\unicode[STIX]{x1D6E4}$. We also show that the support is contained in the closure of the regular points. Regular points exhibit strong contracting properties.


1994 ◽  
Vol 33 (01) ◽  
pp. 81-84 ◽  
Author(s):  
S. Cerutti ◽  
S. Guzzetti ◽  
R. Parola ◽  
M.G. Signorini

Abstract:Long-term regulation of beat-to-beat variability involves several different kinds of controls. A linear approach performed by parametric models enhances the short-term regulation of the autonomic nervous system. Some non-linear long-term regulation can be assessed by the chaotic deterministic approach applied to the beat-to-beat variability of the discrete RR-interval series, extracted from the ECG. For chaotic deterministic systems, trajectories of the state vector describe a strange attractor characterized by a fractal of dimension D. Signals are supposed to be generated by a deterministic and finite dimensional but non-linear dynamic system with trajectories in a multi-dimensional space-state. We estimated the fractal dimension through the Grassberger and Procaccia algorithm and Self-Similarity approaches of the 24-h heart-rate variability (HRV) signal in different physiological and pathological conditions such as severe heart failure, or after heart transplantation. State-space representations through Return Maps are also obtained. Differences between physiological and pathological cases have been assessed and generally a decrease in the system complexity is correlated to pathological conditions.


Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter introduces the concept of stable completion and provides a concrete representation of unit vector Mathematical Double-Struck Capital A superscript n in terms of spaces of semi-lattices, with particular emphasis on the frontier between the definable and the topological categories. It begins by constructing a topological embedding of unit vector Mathematical Double-Struck Capital A superscript n into the inverse limit of a system of spaces of semi-lattices L(Hsubscript d) endowed with the linear topology, where Hsubscript d are finite-dimensional vector spaces. The description is extended to the projective setting. The linear topology is then related to the one induced by the finite level morphism L(Hsubscript d). The chapter also considers the condition that if a definable set in L(Hsubscript d) is an intersection of relatively compact sets, then it is itself relatively compact.


Sign in / Sign up

Export Citation Format

Share Document