scholarly journals 3-setwise intersecting families of the symmetric group

2021 ◽  
Vol 344 (8) ◽  
pp. 112467
Author(s):  
Angelot Behajaina ◽  
Roghayeh Maleki ◽  
Aina Toky Rasoamanana ◽  
A. Sarobidy Razafimahatratra
10.37236/602 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Vikram Kamat

We consider the following generalization of the seminal Erdős–Ko–Rado theorem, due to Frankl. For some $k\geq 2$, let $\mathcal{F}$ be a $k$-wise intersecting family of $r$-subsets of an $n$ element set $X$, i.e. for any $F_1,\ldots,F_k\in \mathcal{F}$, $\cap_{i=1}^k F_i\neq \emptyset$. If $r\leq \dfrac{(k-1)n}{k}$, then $|\mathcal{F}|\leq {n-1 \choose r-1}$. We prove a stability version of this theorem, analogous to similar results of Dinur-Friedgut, Keevash-Mubayi and others for the EKR theorem. The technique we use is a generalization of Katona's circle method, initially employed by Keevash, which uses expansion properties of a particular Cayley graph of the symmetric group.


10.37236/943 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Cheng Yeaw Ku ◽  
Tony W. H. Wong

Let $S_{n}$ denote the symmetric group on $[n]=\{1, \ldots, n\}$. A family $I \subseteq S_{n}$ is intersecting if any two elements of $I$ have at least one common entry. It is known that the only intersecting families of maximal size in $S_{n}$ are the cosets of point stabilizers. We show that, under mild restrictions, analogous results hold for the alternating group and the direct product of symmetric groups.


2003 ◽  
Vol 40 (3) ◽  
pp. 287-291 ◽  
Author(s):  
Peter Frankl ◽  
Norihide Tokushige

Author(s):  
Heather M Russell ◽  
Julianna Tymoczko

Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $\mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $\mathfrak{sl}_3$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $\mathfrak{sl}_2$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $\mathfrak{sl}_3$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $\mathfrak{sl}_3$.


1995 ◽  
Vol 46 (2) ◽  
pp. 201-234 ◽  
Author(s):  
JOANNA SCOPES
Keyword(s):  

1989 ◽  
Vol 1 (19) ◽  
pp. 3073-3082 ◽  
Author(s):  
K Slevin ◽  
E Castano ◽  
J B Pendry

Sign in / Sign up

Export Citation Format

Share Document