scholarly journals A novel variant of DNA polymerase ζ, Rev3ΔC, highlights differential regulation of Pol32 as a subunit of polymerase δ versus ζ in Saccharomyces cerevisiae

DNA Repair ◽  
2014 ◽  
Vol 24 ◽  
pp. 138-149 ◽  
Author(s):  
Hollie M. Siebler ◽  
Artem G. Lada ◽  
Andrey G. Baranovskiy ◽  
Tahir H. Tahirov ◽  
Youri I. Pavlov
2003 ◽  
Vol 23 (8) ◽  
pp. 2733-2748 ◽  
Author(s):  
Shaune Edwards ◽  
Caroline M. Li ◽  
Daniel L. Levy ◽  
Jessica Brown ◽  
Peter M. Snow ◽  
...  

ABSTRACT The large subunit of Saccharomyces cerevisiae DNA polymerase ε, Pol2, comprises two essential functions. The N terminus has essential DNA polymerase activity. The C terminus is also essential, but its function is unknown. We report here that the C-terminal domain of Pol2 interacts with polymerase σ (Pol σ), a recently identified, essential nuclear nucleotidyl transferase encoded by two redundant genes, TRF4 and TRF5. This interaction is functional, since Pol σ stimulates the polymerase activity of the Pol ε holoenzyme significantly. Since Trf4 is required for sister chromatid cohesion as well as for completion of S phase and repair, the interaction suggested that Pol ε, like Pol σ, might form a link between the replication apparatus and sister chromatid cohesion and/or repair machinery. We present evidence that pol2 mutants are defective in sister chromatid cohesion. In addition, Pol2 interacts with SMC1, a subunit of the cohesin complex, and with ECO1/CTF7, required for establishing sister chromatid cohesion; and pol2 mutations act synergistically with smc1 and scc1. We also show that trf5Δ mutants, like trf4Δ mutants, are defective in DNA repair and sister chromatid cohesion.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1409-1422 ◽  
Author(s):  
Meng-Er Huang ◽  
Anne-Gaëlle Rio ◽  
Marie-Dominique Galibert ◽  
Francis Galibert

Abstract The Pol32 subunit of S. cerevisiae DNA polymerase (Pol) δ plays an important role in replication and mutagenesis. Here, by measuring the CAN1 forward mutation rate, we found that either POL32 or REV3 (which encodes the Pol ζ catalytic subunit) inactivation produces overlapping antimutator effects against rad mutators belonging to three epistasis groups. In contrast, the msh2Δ pol32Δ double mutant exhibits a synergistic mutator phenotype. Canr mutation spectrum analysis of pol32Δ strains revealed a substantial increase in the frequency of deletions and duplications (primarily deletions) of sequences flanked by short direct repeats, which appears to be RAD52 and RAD10 independent. To better understand the pol32Δ and rev3Δ antimutator effects in rad backgrounds and the pol32Δ mutator effect in a msh2Δ background, we determined Canr mutation spectra for rad5Δ, rad5Δ pol32Δ, rad5Δ rev3Δ, msh2Δ, msh2Δ pol32Δ, and msh2Δ rev3Δ strains. Both rad5Δ pol32Δ and rad5Δ rev3Δ mutants exhibit a reduction in frameshifts and base substitutions, attributable to antimutator effects conferred by the pol32Δ and rev3Δ mutations. In contrast, an increase in these two types of alterations is attributable to a synergistic mutator effect between the pol32Δ and msh2Δ mutations. Taken together, these observations indicate that Pol32 is important in ensuring genome stability and in mutagenesis.


Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1315-1325
Author(s):  
Wei Chen ◽  
Maria A Islas-Osuna ◽  
Carol L Dieckmann

Abstract The cytochrome b gene in Saccharomyces cerevisiae, COB, is encoded by the mitochondrial genome. Nuclear-encoded Cbp1 protein is required specifically for COB mRNA stabilization. Cbp1 interacts with a CCG element in a 64-nucleotide sequence in the 5′-untranslated region of COB mRNA. Mutation of any nucleotide in the CCG causes the same phenotype as cbp1 mutations, i.e., destabilization of both COB precursor and mature message. In this study, eleven nuclear suppressors of single-nucleotide mutations in CCG were isolated and characterized. One dominant suppressor is in CBP1, while the other 10 semidominant suppressors define five distinct linkage groups. One group of four mutations is in PET127, which is required for 5′ end processing of several mitochondrial mRNAs. Another mutation is linked to DSS1, which is a subunit of mitochondrial 3′ → 5′ exoribonuclease. A mutation linked to the SOC1 gene, previously defined by recessive mutations that suppress cbp1 ts alleles and stabilize many mitochondrial mRNAs, was also isolated. We hypothesize that the products of the two uncharacterized genes also affect mitochondrial RNA turnover.


2018 ◽  
Vol 8 (2) ◽  
pp. 754-754
Author(s):  
Likui Zhang ◽  
Yanchao Huang ◽  
Xinyuan Zhu ◽  
Yuxiao Wang ◽  
Haoqiang Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document