sister chromatid
Recently Published Documents


TOTAL DOCUMENTS

3529
(FIVE YEARS 122)

H-INDEX

117
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Aimee Jaramillo-Lambert ◽  
Christine Kiely Rourke

During meiotic prophase I, accurate segregation of homologous chromosomes requires the establishment of a chromosomes with a meiosis-specific architecture. Sister chromatid cohesins and the enzyme Topoisomerase II are important components of meiotic chromosome axes, but the relationship of these proteins in the context of meiotic chromosome segregation is poorly defined. Here, we analyzed the role of Topoisomerase II (TOP-2) in the timely release of sister chromatid cohesins during spermatogenesis and oogenesis of Caenorhabditis elegans. We show that there is a different requirement for TOP-2 in meiosis of spermatogenesis and oogenesis. The loss-of-function mutation top-2(it7) results in premature REC-8 removal in spermatogenesis, but not oogenesis. This is due to a failure to maintain the HORMA-domain proteins HTP-1 and HTP-2 (HTP-1/2) on chromosome axes at diakinesis and mislocalization of the downstream components that control sister chromatid cohesion release including Aurora B kinase. In oogenesis, top-2(it7) causes a delay in the localization of Aurora B to oocyte chromosomes but can be rescued through premature activation of the maturation promoting factor via knock-down of the inhibitor kinase WEE-1.3. The delay in Aurora B localization is associated with an increase in the length of diakinesis chromosomes and wee-1.3 RNAi mediated rescue of Auorora B localization in top-2(it7) is associated with a decrease in chromosome length. Our results imply that the sex-specific effects of Topoisomerase II on sister chromatid cohesion release are due to differences in the temporal regulation of meiosis and chromosome structure in late prophase I in spermatogenesis and oogenesis.


2021 ◽  
Author(s):  
Gregory Eot-Houllier ◽  
Laura Magnaghi-Jaulin ◽  
Gaelle Bourgine ◽  
Erwan Watrin ◽  
Christian Jaulin

During the cell cycle, dynamic post-translational modifications modulate the association of the cohesin complex with chromatin. Phosphorylation / dephosphorylation and acetylation / deacetylation of histones and of cohesin components ensure correct establishment of cohesion during S phase and its proper dissolution during mitosis. In contrast, little is known about the contribution of methylation to the regulation of sister chromatid cohesion. We performed a RNA interference-mediated inactivation screen against 14 histone methyltransferases of the SET domain family that highlighted NSD3 as a factor essential for sister chromatid cohesion in mitosis. We established that NSD3 ensures proper level of the cohesin loader MAU2 and of cohesin itself onto chromatin at mitotic exit. Consistent with its implication in the loading of kollerin and cohesin complexes onto chromatin, we showed that NSD3 associates with chromatin in early anaphase prior to that of MAU2 and RAD21 and dissociates from chromatin upon cell's entry into prophase. Finally, we demonstrated that of the two NSD3 variant that exist in somatic cells, the long form that carries the methyltransferase activity is the one that acts in cohesion regulation. Taken together, these results describe a novel factor associated with histone methylation in cohesin loading.


Author(s):  
Awad A. Algarni

Sunset Yellow (SY) is an organic azo dye that is used extensively as a coloring agent in many industries, such as cosmetics, pharmaceuticals ,and foodstuffs. Many studies have conflicting results about the genotoxicity effect of SY. Thus, the purpose of this study was to provide additional data concerning SY genotoxicity in human lymphocytes by using chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) assay. Four concentrations of Sunset Yellow (1, 5, 20 ,and 50 mg/ml) were used on human lymphocyte cultures. Positive and negative controls were mitomycin C and distilled water, respectively. Compared to the control, SY caused a significant increase in CAs and SCEs frequencies at all concentrations. A total of five types of CAs were observed, such as gaps, fragments, RCF, stickiness,and polyploidy. According to the present results, high concentrations of SY are genotoxic in vitro to cultured human lymphocytes. To determine its full genotoxicity potential, SY should be tested in other test systems.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3455
Author(s):  
Janne J.M. van Schie ◽  
Job de Lange

The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.


2021 ◽  
Author(s):  
Rachael E Barton ◽  
Lucia F Massari ◽  
Daniel Robertson ◽  
Adele L Marston

Cohesin organizes the genome by forming intra-chromosomal loops and inter-sister chromatid linkages. During gamete formation by meiosis, chromosomes are reshaped to support crossover recombination and two consecutive rounds of chromosome segregation. Here we show that Eco1 acetyltransferase positions both chromatin loops and sister chromatid cohesion to organize meiotic chromosomes into functional domains in budding yeast. Eco1 acetylates the Smc3 cohesin subunit in meiotic S phase to establish chromatin boundaries, independently of DNA replication. Boundary formation by Eco1 is critical for prophase exit and for the maintenance of cohesion until meiosis II, but is independent of the ability of Eco1 to antagonize the cohesin-release factor, Wpl1. Conversely, prevention of cohesin release by Wpl1 is essential for centromeric cohesion, kinetochore monoorientation and co-segregation of sister chromatids in meiosis I. Our findings establish Eco1 as a key determinant of chromatin boundaries and cohesion positioning, revealing how local chromosome structuring directs genome transmission into gametes.


2021 ◽  
Author(s):  
Anne Margriet Heijink ◽  
Colin Stok ◽  
David Porubsky ◽  
Eleni M. Manolika ◽  
Yannick P. Kok ◽  
...  

SummarySister chromatid exchanges (SCEs) are products of joint DNA molecule resolution, and are considered to form through homologous recombination (HR). Indeed, upon generation of irradiation-induced DNA breaks, SCE induction was compromised in cells deficient for canonical HR factors BRCA1, BRCA2 and RAD51. Contrarily, replication-blocking agents, including PARP inhibitors, induced SCEs independently of BRCA1, BRCA2 and RAD51. PARP inhibitor-induced SCEs were enriched at common fragile sites (CFSs), and were accompanied by post-replicative single-stranded DNA (ssDNA) gaps. Moreover, PARP inhibitor-induced replication lesions were transmitted into mitosis, suggesting that SCEs originate from mitotic processing of under-replicated DNA. We found that DNA polymerase theta (POLQ) was recruited to mitotic DNA lesions, and loss of POLQ resulted in reduced SCE numbers and severe chromosome fragmentation upon PARP inhibition in HR-deficient cells. Combined, our data show that PARP inhibition generates under-replicated DNA, which is transferred into mitosis and processed into SCEs, independently of canonical HR factors.


2021 ◽  
Vol 35 (19-20) ◽  
pp. 1368-1382
Author(s):  
Ryotaro Kawasumi ◽  
Takuya Abe ◽  
Ivan Psakhye ◽  
Keiji Miyata ◽  
Kouji Hirota ◽  
...  

The alternative PCNA loader containing CTF18-DCC1-CTF8 facilitates sister chromatid cohesion (SCC) by poorly defined mechanisms. Here we found that in DT40 cells, CTF18 acts complementarily with the Warsaw breakage syndrome DDX11 helicase in mediating SCC and proliferation. We uncover that the lethality and cohesion defects of ctf18 ddx11 mutants are associated with reduced levels of chromatin-bound cohesin and rescued by depletion of WAPL, a cohesin-removal factor. On the contrary, high levels of ESCO1/2 acetyltransferases that acetylate cohesin to establish SCC do not rescue ctf18 ddx11 phenotypes. Notably, the tight proximity of sister centromeres and increased anaphase bridges characteristic of WAPL-depleted cells are abrogated by loss of both CTF18 and DDX11. The results reveal that vertebrate CTF18 and DDX11 collaborate to provide sufficient amounts of chromatin-loaded cohesin available for SCC generation in the presence of WAPL-mediated cohesin-unloading activity. This process modulates chromosome structure and is essential for cellular proliferation in vertebrates.


2021 ◽  
Author(s):  
Yu Liu ◽  
Job Dekker

The ring-like cohesin complex mediates sister chromatid cohesion by encircling pairs of sister chromatids. Cohesin also extrudes loops along chromatids. Whether the two activities involve similar mechanisms of DNA engagement is not known. We implemented an experimental approach based on isolated nuclei carrying engineered cleavable RAD21 proteins to precisely control cohesin ring integrity so that its role in chromatin looping could be studied under defined experimental conditions. This approach allowed us to identify cohesin complexes with distinct biochemical, and possibly structural properties, that mediate different sets of chromatin loops. When RAD21 is cleaved and the cohesin ring is opened, cohesin complexes at CTCF sites are released from DNA and loops at these elements are lost. In contrast, cohesin-dependent loops within chromatin domains and that are not anchored at CTCF sites are more resistant to RAD21 cleavage. The results show that the cohesin complex mediates loops in different ways depending on genomic context and suggests that it undergoes structural changes as it dynamically extrudes and encounters CTCF sites.


2021 ◽  
Author(s):  
Nataliya Petryk ◽  
Nazaret Reverón-Gómez ◽  
Cristina González-Aguilera ◽  
Maria Dalby ◽  
Robin Andersson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document