polymerase iii
Recently Published Documents


TOTAL DOCUMENTS

1466
(FIVE YEARS 117)

H-INDEX

91
(FIVE YEARS 4)

Gene ◽  
2022 ◽  
pp. 146130
Author(s):  
Joseph Blayney ◽  
James Geary ◽  
Ruby Chrisp ◽  
Joseph Violet ◽  
Liam Barratt ◽  
...  

2021 ◽  
Author(s):  
Ellen Busschers ◽  
Naseer Ahmad ◽  
Li Sun ◽  
James R Iben ◽  
Christopher J. Walkey ◽  
...  

Maf1, a key repressor of RNA polymerase III-mediated transcription, has been shown to promote mesoderm formation in vitro. Here, we show for the first time that Maf1 plays a critical role in the regulation of osteoblast differentiation and bone mass. A high bone mass phenotype was noted in mice with global deletion of Maf1 (Maf1-/- mice), as well as paradoxically, in mice that overexpressed MAF1 in cells of the osteoblast lineage (Prx-Cre;LSL-Maf1 mice). Osteoblasts isolated from Maf1-/- mice unexpectedly showed reduced osteoblastogenesis ex vivo. Prx-Cre;LSL-Maf1 mice showed enhanced osteoblastogenesis concordant with their high bone mass phenotype. Thus, the high bone mass phenotype in Maf1-/- mice is likely due to the confounding effects of the global absence of MAF1 in Maf1-/- mice. Expectedly, MAF1 overexpression promoted osteoblast differentiation and shRNA-mediated Maf1 downregulation inhibited differentiation of ST2 cells, indicating an overall positive action of Maf1 on osteoblast formation. We also found that, in contrast to MAF1 overexpression, other perturbations that repress RNA pol III transcription, including Brf1 knockdown and the chemical inhibition of RNA pol III by ML-60218, paradoxically inhibited osteoblast differentiation. RNA-seq was used to determine the basis for these opposing actions. The three modalities used to perturb RNA pol III transcription resulted in distinct changes gene expression, indicating that this transcription process is highly sensitive and triggers diverse gene expression programs and phenotypic outcomes. Specifically, MAF1 overexpression in ST2 cells induced genes known to promote osteoblast differentiation. A subset of these genes was altered in an opposite manner with Brf1 downregulation or treatment with ML-60218, both of which also inhibit RNA pol III-mediated transcription. All these perturbations, however, enhanced adipogenesis in ST2 cell cultures. Furthermore, codon bias was observed in a subset of genes expressed during osteoblast differentiation. Together, these results reveal a novel role for Maf1 and RNA pol III-mediated transcription in osteoblast fate determination and differentiation and bone mass regulation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Saurabh Mishra ◽  
Shaina H. Hasan ◽  
Rima M. Sakhawala ◽  
Shereen Chaudhry ◽  
Richard J. Maraia

AbstractRNA polymerase III achieves high level tRNA synthesis by termination-associated reinitiation-recycling that involves the essential C11 subunit and heterodimeric C37/53. The C11-CTD (C-terminal domain) promotes Pol III active center-intrinsic RNA 3′-cleavage although deciphering function for this activity has been complicated. We show that the isolated NTD (N-terminal domain) of C11 stimulates Pol III termination by C37/53 but not reinitiation-recycling which requires the NTD-linker (NTD-L). By an approach different from what led to current belief that RNA 3′-cleavage activity is essential, we show that NTD-L can provide the essential function of Saccharomyces cerevisiae C11 whereas classic point mutations that block cleavage, interfere with active site function and are toxic to growth. Biochemical and in vivo analysis including of the C11 invariant central linker led to a model for Pol III termination-associated reinitiation-recycling. The C11 NTD and CTD stimulate termination and RNA 3′-cleavage, respectively, whereas reinitiation-recycling activity unique to Pol III requires only the NTD-linker. RNA 3′-cleavage activity increases growth rate but is nonessential.


2021 ◽  
Author(s):  
Caleb Homiski ◽  
Michelle K. Scotland ◽  
Vignesh M. P. Babu ◽  
Sundari Chodavarapu ◽  
Robert W. Maul ◽  
...  

Expression of the E. coli dnaN -encoded β clamp at ≥10-fold higher than chromosomally-expressed levels impedes growth by interfering with DNA replication. We hypothesized that the excess β clamp sequesters the replicative DNA polymerase III (Pol III) to inhibit replication. As a test of this hypothesis, we measured the ability of eight mutant clamps obtained by their inability to impede growth to stimulate Pol III replication in vitro . Compared with the wild type clamp, seven of the mutants were defective, consistent with their elevated cellular levels failing to sequester Pol III. However, the β E202K mutant, which bears a glutamic acid-to-lysine substitution at residue 202 displayed an increased affinity for Pol IIIα and Pol III core (Pol IIIαεθ), suggesting that it could still effectively sequester Pol III. Of interest, β E202K supported in vitro DNA replication by Pol II and Pol IV, but was defective with Pol III. Genetic experiments indicated that the dnaN E202K strain remained proficient in DNA damage-induced mutagenesis, but was modestly induced for SOS and displayed sensitivity to ultraviolet light and methyl methanesulfonate. These results correlate an impaired ability of the mutant β E202K clamp to support Pol III replication in vivo with its in vitro defect in DNA replication. Taken together, our results: (i) support the model that sequestration of Pol III contributes to growth inhibition, (ii) argue for existence of an additional mechanism that contributes to lethality and (iii) suggest that physical and functional interactions of the β clamp with Pol III are more extensive than currently appreciated. IMPORTANCE The β clamp plays critically important roles in managing the actions of multiple proteins at the replication fork. However, we lack a molecular understanding of both how the clamp interacts with these different partners, and the mechanisms by which it manages their respective actions. We previously exploited the finding that an elevated cellular level of the β clamp impedes E. coli growth by interfering with DNA replication. Using a genetic selection method, we obtained novel mutant β clamps that fail to inhibit growth. Their analysis revealed that β E202K is unique among them. Our work offers new insights into how the β clamp interacts with and manages the actions of E. coli DNA polymerases II, III and IV.


2021 ◽  
Vol 22 (18) ◽  
pp. 9897
Author(s):  
Nikita S. Vassetzky ◽  
Olga R. Borodulina ◽  
Ilia G. Ustyantsev ◽  
Sergei A. Kosushkin ◽  
Dmitri A. Kramerov

Short Interspersed Elements (SINEs) are eukaryotic non-autonomous retrotransposons transcribed by RNA polymerase III (pol III). The 3′-terminus of many mammalian SINEs has a polyadenylation signal (AATAAA), pol III transcription terminator, and A-rich tail. The RNAs of such SINEs can be polyadenylated, which is unique for pol III transcripts. Here, B2 (mice and related rodents), Dip (jerboas), and Ves (vespertilionid bats) SINE families were thoroughly studied. They were divided into subfamilies reliably distinguished by relatively long indels. The age of SINE subfamilies can be estimated, which allows us to reconstruct their evolution. The youngest and most active variants of SINE subfamilies were given special attention. The shortest pol III transcription terminators are TCTTT (B2), TATTT (Ves and Dip), and the rarer TTTT. The last nucleotide of the terminator is often not transcribed; accordingly, the truncated terminator of its descendant becomes nonfunctional. The incidence of complete transcription of the TCTTT terminator is twice higher compared to TTTT and thus functional terminators are more likely preserved in daughter SINE copies. Young copies have long poly(A) tails; however, they gradually shorten in host generations. Unexpectedly, the tail shortening below A10 increases the incidence of terminator elongation by Ts thus restoring its efficiency. This process can be critical for the maintenance of SINE activity in the genome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yavuz Kulaberoglu ◽  
Yasir Malik ◽  
Gillian Borland ◽  
Colin Selman ◽  
Nazif Alic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document