Spatial and temporal variability of phytoplankton in the Gulf of Cádiz through remote sensing images

2006 ◽  
Vol 53 (11-13) ◽  
pp. 1241-1260 ◽  
Author(s):  
Gabriel Navarro ◽  
Javier Ruiz
2019 ◽  
Vol 45 (3) ◽  
pp. 490-507 ◽  
Author(s):  
Michael J. Sayers ◽  
Karl R. Bosse ◽  
Robert A. Shuchman ◽  
Steven A. Ruberg ◽  
Gary L. Fahnenstiel ◽  
...  

2014 ◽  
Vol 15 (4) ◽  
pp. 721 ◽  
Author(s):  
I. CABALLERO ◽  
E. P. MORRIS ◽  
L. PIETRO ◽  
G. NAVARRO

This study examines the spatio-temporal variability of the turbidity plume and phytoplankton biomass (in terms of chlorophyll) in the marine region influenced by the Guadalquivir estuary using ocean colour images over a period of 11 years (2003-2013). The area of the turbidity plume was calculated using water-leaving radiance at 555 nm (nLw555). Climatologic and monthly averages showed recurrent high nLw555 levels in winter and high chlorophyll in spring. Similar variability was confirmed by Empirical Orthogonal Function (EOF) analysis of 8-day composite images, illustrating the existence of different regions with similar behavior. The first EOF mode explained 60.7% and 31% of the variability in nLw555 and chlorophyll, respectively, and was associated with enhanced Total Suspended Solids (TSS) in autumn-winter and phytoplankton blooms in winter-spring periods. The results confirmed that the development of the turbidity plume and subsequent phytoplankton blooms were strongly regulated by river discharges and precipitation. Indeed, interannual variation in nLw555 was consistent with changes in the large-scale climate index, the North Atlantic Oscillation, a proxy for regional rainfall patterns. In the case of phytoplankton biomass, the second EOF mode revealed differentiation between offshore and nearshore areas, the latter characterized by delayed development of phytoplankton bloom due to light limitation by high TSS. This suggests that the stability of the water column, via its influence on phytoplankton light-limitation, influenced also the timing and magnitude of phytoplankton bloom events. The dynamic of the Guadalquivir estuary turbidity plume is a crucial factor for the pelagic ecosystem of the Eastern Gulf of Cadiz, governing phytoplankton productivity.


Tellus B ◽  
2002 ◽  
Vol 54 (5) ◽  
pp. 820-833 ◽  
Author(s):  
Sébastien Lafont ◽  
Laurent Kergoat ◽  
Gérard Dedieu ◽  
Anne Chevillard ◽  
Ute Karstens ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5806 ◽  
Author(s):  
Bryony K. Willcox ◽  
Andrew J. Robson ◽  
Brad G. Howlett ◽  
Romina Rader

Insect pollinators provide an essential ecosystem service by transferring pollen to crops and native vegetation. The extent to which pollinator communities vary both spatially and temporally has important implications for ecology, conservation and agricultural production. However, understanding the complex interactions that determine pollination service provisioning and production measures over space and time has remained a major challenge. Remote sensing technologies (RST), including satellite, airborne and ground based sensors, are effective tools for measuring the spatial and temporal variability of vegetation health, diversity and productivity within natural and modified systems. Yet while there are synergies between remote sensing science, pollination ecology and agricultural production, research communities have only recently begun to actively connect these research areas. Here, we review the utility of RST in advancing crop pollination research and highlight knowledge gaps and future research priorities. We found that RST are currently used across many different research fields to assess changes in plant health and production (agricultural production) and to monitor and evaluate changes in biodiversity across multiple landscape types (ecology and conservation). In crop pollination research, the use of RST are limited and largely restricted to quantifying remnant habitat use by pollinators by ascertaining the proportion of, and/or isolation from, a given land use type or local variable. Synchronization between research fields is essential to better understand the spatial and temporal variability in pollinator dependent crop production. RST enable these applications to be scaled across much larger areas than is possible with field-based methods and will facilitate large scale ecological changes to be detected and monitored. We advocate greater use of RST to better understand interactions between pollination, plant health and yield spatial variation in pollinator dependent crops. This more holistic approach is necessary for decision-makers to improve strategies toward managing multiple land use types and ecosystem services.


Sign in / Sign up

Export Citation Format

Share Document